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(U
Items ﬁCAS

e optimizations

e frequency calculations

e finding transition states (TS)

e exploring the energy as a function of specific internal coordinates
e computing reactions paths, minimum energy paths (MEP)

e finding minimum energy cross point (MECP)

e mapping out the (conical) intersection subspace
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LUND Optimizations for minima JCAS
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repulsive walls
around molecule

o

excited state

ev

potential energy /

e We want to find stationary points and other structures close to a

starting structure.
e \We want to have procedures in which can walk the "surface in a

controlled way.

The SlapAf module controlls geometry manipulations.
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Input initial geometry x
{best guess at molecular st)q{.lctu_re)

Y

Choose coordinate system best
suited for desired optimization

Y

Calculate energy E %

Y

Calculate gradient vector, g
(first derivative of £ with respect
to coordinate displacement)

Y

Estimate or calculate Hessian matrix, H
(second derivative of £ with respect
to coordinate displacement)

Y

From E, g, and H, calculate a new step, h
(x = x + h should be a better estimate of the
location of the stationary point sought than x was)

Y

Check for convergence
(ie., are energy differences, gradients, and
displacement less than desired tolerances?)

Y Y

YES NO
Converged ® Take new step
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Optimizations for minima ﬁCAS

SlapAf is using a quasi 2nd order method for geometry optimizations

LUND

UNIVERSITY

e Restricted Step Rational Function optimization (default)
e quasi-Newton update (BFGS, MSP)
e internal coordinates (default) or cartesian coordinates

e a trust radius

Consult notes by Trygve Helgaker " Optimization of Minima and Saddle
points”, and the paper by Anglada on RS-RF optimization.



LUND Slapaf Keywords
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In the lab we will explore

e Iterations : max number of iterations
e MaxStep : initial trust radius
e Cartesian : selection of internal coordinates

e NoLineSearch : skip line search



LUND Frequency calculations
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e McKinely and MCLR are used for analytic frequencies
e Slapaf enables numerical frequency calculations

e MCLR module envoked automatically

e Analytic: SCF and CASSCF.



LUND TS Optimization

UNIVERSITY
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optimization, however, in one dimension we will do a maximization!

Transition state optimization is like a normal

Near convergence method.

e Partition technique, RS-P-RF
e Image technique, RS-I-RF

See notes by T. Helgaker!
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TS Optimization ﬁCAS

LUND

The trick is to get to the TS region!
Slapaf commands to controll this process.
o TS
e Mode
e FindTS



LD Constraint Optimizations
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The approach presented here is a

e a 1st order method to separate the minimization and constraints
e a restricted-step procedure with a back-feed mechanism

e use of general constraints which not necessarily are internal coordi-
nates.
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Theory @CAS

Standard approach is to use so-called Lagrangian multipliers.

L(q,\) = E(q) — A'r(q) (1)

Draw backs

e number of parameters to optimize increase
e mixed minimization and maximization optimization
e implicit separation of subspaces due to Hessian eigen values

e BFGS update method can't be used, H has negative eigen values

11



The Projected constrained optimization (PCO), ﬁ
CAS

LUND by Anglada and Bofill

UNIVERSITY

A Taylor expansion to 2nd order of L(q, A) around qg and Ay gives
L(qo+ Aq, M+ AN) = E(qo) + A% 4 IAq"WAq

2
—)\T(r(q ) ar(qO)Aq) ( )
where W is defined as
0°E(q 0*(r(qo));
Wiah) = T - 5 (), S D) )

This sets up the equation for the generalized elimination method. We
note that the last term of the RHS in Eq. 77 controls to first order the
constraint.
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In the subspace which fulfill the constraint any displacement Aq must
be such that

or(qo)
A
oq

This defines a linear transformation which will to first order subdived

q=20 (4)

the original 3n-6(5) space into a m-dimensional space in which the

constraints are fulfilled and a 3n-6(5)-m subspace in which a normal

optimization is made. The unitary transformation matrix T contains
two part and transform as

Ay

Aq = [T.T,)] ( A

) = T.Ay + T,,Ax (5)

where, y and x are the new parameters. y is of m dimensions and x of
3n-6(5)-m dimension.
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In particular we note that at \g

Or(qo)

9q T.#0 (6)
and
dr(qo) -
g T, =0 (7)

These two equations are sufficient for the definition of T via a
Gram-Schmidt procedure.
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We now proceed by introducing our transformation matrix into our
Lagrangian expression (Eq. ?7). The equation now falls into two parts
(one of m and a second of 3n-6(5)m dimensions), one which depends

only on y,

Or(qo)
dq

and a second part which depends on both x and vy,

Ay = —( T.) 'r(qo) (8)

Qao +Aq,\) = E(qo) + Ay TIE %) 4 IAYyTTIWT,Ay
£ AXTTE(PE@) | W, Ay) (9)
+ AXI'TLWT, Ax.

This equation is the projected energy expression with T2 WT,, being

the reduced Hessian and T%(%&m + WT_.Ay) is the reduced
gradient.
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Using the quasi-Newton condition applied to Eq.7?7 we find that the
effective gradient to be used in an Hessian update procedure applied
only to the molecular part of the Lagrangian Hessian is

- 2o

A (10)

The update procedure is commenced by evaluating a series of h(q, \)
for different values of q and a fixed value of A. A suitable value of A is
the first order estimate of \ at convergence as given by

h(do, Ao) =0 (11)
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To conclude the presentation of the PCO approach of Anglada and
Bofill let us here summarize the major advantages the presented
method has as compared to a optimization/maximization procedure
applied to Eq. 77,

e the PCO approach have an explicit separation of the two subspaces
where as a optimization/maximization indirectly separates the two

subspaces by identifying the positive and negative eigen vectors of
the Hessian of the Lagrangian,

e the presence of negative eigen values in the Hessian of the La-
grangian restricts the selection of Hessian update ( variable metric)
methods while the PCO approach allows the use of the BFGS update
method to be applied to the reduced Hessian, and

e the the PCO technique by Bofill and Anglada does not explicitly
17



require A to be determined.
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Restricted-step mechanism ﬂCAS

e Restricted-Step Rational Function Optimization is used where the
max step length is dynamically changed to reflect the agreement
between the analytic gradients and the model function used in the
optimization.

e Similar arrangement is done for the constrained subspace.

e The max step length in both subspaces are are coupled.

19



Constrained geometry optimization require 1st and 2nd order
derivatives of the constraints with respect to the internal coordinates.
This is trivial for Cartesian coordinates. For curvilinear coordinates
Baker et al suggested to include the constraints in the definition of the
redundant internal coordinate space followed by a linear transformation
after the generation of the non-redundant coordinates such that the
constraint equals on of the non-redundant coordinates. In this paper
we will present the required derivatives for the case when the
constraints not necessarily are explicitly expressed in the redundant
space of internal coordinates.

Given
9, 0 0q
-1 12
ox 0qox (12)
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the 1st order derivative is trivially expressed as

or <6q>1 or

dq  \ox) ox

and the 2nd derivative is expressed as

O*r <aq>1 Ka% or 62q] <aq>1

ox2  Jq0x?

8q2_ Ox Ox

21
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LUND Applications
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e Single geometrical constraint constraint

e Multiple geometrical constraint constraints
e Minimum Energy Path

e Minimum Energy Cross Point

e Spacial extension of a intersection subspace

22
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Single geometrical constraint ﬁCAS

As an example of a geometry optimization with a simple geometrical
constraint we study energy profile of the hindered rotation of ethane In
this series of optimizations we fix the HCCH dihedral angle, i.e. the
constraint Is

r1 = PHCCH — Phcc (15)

The geometry optimizations converged on average after 6 iterations for
each selected angle.
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Figure 1: CoH4 Hindered rotation.
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Multiple geometrical constraints ﬁCAS

As an example of a geometry optimization with multiple geometry
constraints we study the energy surface of the triplet 1,2-dioxoethane
around the biradical minimum as a function of the OO bond distance

and the OCCO dihedral angle, i.e. the constraints are

9 = T00 — T%O? (16)
and
re = $occo — POeco- (17)

The geometry optimization typically converge after 5 iterations for
each selected pair of constraints.
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Figure 2: The potential energy surface of triplet 1,2-dioxetane as a function of the OO bond
distance (Angstrom) and the OCCO dihedral angle (degrees).
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Minimum Energy Path @CAS

A minimum energy path (MEP) can be found by minimizing the

UNIVERSITY

energy of the hypersphere with a fixed radius, where the origin of the
sphere is the geometry of some reference structure. For a MEP the
reference structure is the selected to be the resulting structure of the
previous step. If one starts from the TS one get the reaction path of
the Intrinsic Reaction Coordinates (IRC). The hypersphere
optimization is performed in mass weighted Cartesian coordinates,

R(q) = (vmuri(q), (Vmara(q), ..., (Vmara(q)). (18)

For this purpose the constraint is defined as

. _ (B(@) - Rla.) - A
V Mtot
where R is the radius of the hypersphere and M, is the total mass of
27
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the system.

As an example we take 1,2-dioxoethane as it is dropped on the triplet
state surface at a geometry close to the singlet transition state
between the cyclic and biradical structure.
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Minimum Energy Path

Curvilinear reaction coordinates
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Figure 3: The minimum energy path of 1,2-dioxoethane on the triplet state surface starting at

a geometry close to the singlet transition state.
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Minimum Energy Cross Point ﬁCAS

A minimum energy cross point is found by finding the lowest energy of
the excited state at which two states are degenerate. The constraint is
the energy difference between the two states,

T = E1 — E(). (20)

Here we will as an example display some statistic in the search for a
intersection between the A and 'A state of N-methyl thioacetamid.

The statistic of the energy of the excited state, and the energy
difference, display a robust and conservative convergence.
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Figure 4: N-methyl thioacetamid.

31



Excited state energy in a MECP optimization
N-methy] thioacetamid
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Figure 5: The excited triplet state energy of N-methyl thioacetamid as a function of the iteration

count during the MECP optimization.
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Energy Difference during the MECP Optimization.

N-methyl thioacetamid.

Energy difference / kJ/mol

8 I | I | I | I
5 10 15

Iteration count

Figure 6: The energy difference as a function of the iteration count during the MECP optimiza-
tion.
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Exploring the conical intersection ﬁCAS

To explore the spatial extension of the intersection subspace we will
combine the constraints of the intersection

T = E1 — E(). (21)

with those of the MEP search

(V(R(q) — R(ares))* — R
Mtot

" = (22)

We demonstrate the results of such a search for acrolein.
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Figure 7: Intersection subspaces
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We will in the lab explore

e Constraints ... End of Constraints
e MaxStep

e definition of a hypersphere

e definition of energy differences

e how to define internal coordinates
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