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Items
CAS

• optimizations

• frequency calculations

• finding transition states (TS)

• exploring the energy as a function of specific internal coordinates

• computing reactions paths, minimum energy paths (MEP)

• finding minimum energy cross point (MECP)

• mapping out the (conical) intersection subspace
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Optimizations for minima
CAS

• We want to find stationary points and other structures close to a

starting structure.

• We want to have procedures in which can walk the ”surface in a

controlled way.

The SlapAf module controlls geometry manipulations.
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Optimizations for minima
CAS

SlapAf is using a quasi 2nd order method for geometry optimizations

• Restricted Step Rational Function optimization (default)

• quasi-Newton update (BFGS, MSP)

• internal coordinates (default) or cartesian coordinates

• a trust radius

Consult notes by Trygve Helgaker ”Optimization of Minima and Saddle

points”, and the paper by Anglada on RS-RF optimization.
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Slapaf Keywords
CAS

In the lab we will explore

• Iterations : max number of iterations

• MaxStep : initial trust radius

• Cartesian : selection of internal coordinates

• NoLineSearch : skip line search
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Frequency calculations
CAS

• McKinely and MCLR are used for analytic frequencies

• Slapaf enables numerical frequency calculations

• MCLR module envoked automatically

• Analytic: SCF and CASSCF.
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TS Optimization
CAS

Transition state optimization is like a normal

optimization, however, in one dimension we will do a maximization!

Near convergence method.

• Partition technique, RS-P-RF

• Image technique, RS-I-RF

See notes by T. Helgaker!
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TS Optimization
CAS

The trick is to get to the TS region!

Slapaf commands to controll this process.

• TS

• Mode

• FindTS
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Constraint Optimizations
CAS

The approach presented here is a

• a 1st order method to separate the minimization and constraints

• a restricted-step procedure with a back-feed mechanism

• use of general constraints which not necessarily are internal coordi-

nates.
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Theory
CAS

Standard approach is to use so-called Lagrangian multipliers.

L(q, λ) = E(q) − λTr(q) (1)

Draw backs

• number of parameters to optimize increase

• mixed minimization and maximization optimization

• implicit separation of subspaces due to Hessian eigen values

• BFGS update method can’t be used, H has negative eigen values
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The Projected constrained optimization (PCO),

by Anglada and Bofill
CAS

A Taylor expansion to 2nd order of L(q, λ) around q0 and λ0 gives

L(q0 + ∆q, λ0 + ∆λ) = E(q0) + ∆qT ∂E(q0)
∂q

+ 1
2∆qTW∆q

−λT (r(q0) + ∂r(q0)
∂q

∆q)
(2)

where W is defined as

W(q, λ0) =
∂2E(q0)

∂q2
−

∑

i=1,m

(λ0)i

∂2(r(q0))i

∂q2
(3)

This sets up the equation for the generalized elimination method. We

note that the last term of the RHS in Eq. ?? controls to first order the

constraint.
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In the subspace which fulfill the constraint any displacement ∆q must

be such that

∂r(q0)

∂q
∆q = 0 (4)

This defines a linear transformation which will to first order subdived

the original 3n-6(5) space into a m-dimensional space in which the

constraints are fulfilled and a 3n-6(5)-m subspace in which a normal

optimization is made. The unitary transformation matrix T contains

two part and transform as

∆q = [TcTm]





∆y

∆x



 = Tc∆y + Tm∆x (5)

where, y and x are the new parameters. y is of m dimensions and x of

3n-6(5)-m dimension.
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In particular we note that at λ0

∂r(q0)

∂q
Tc 6= 0 (6)

and

∂r(q0)

∂q
Tm = 0 (7)

These two equations are sufficient for the definition of T via a

Gram-Schmidt procedure.
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We now proceed by introducing our transformation matrix into our

Lagrangian expression (Eq. ??). The equation now falls into two parts

(one of m and a second of 3n-6(5)m dimensions), one which depends

only on y,

∆y = −(
∂r(q0)

∂q
Tc)

−1r(q0) (8)

and a second part which depends on both x and y,

Q(q0 + ∆q, λ) = E(q0) + ∆yTTT
c

∂E(q0)
∂q

+ 1
2∆yTTT

c WTc∆y

+ ∆xTTT
m(∂E(q0)

∂q
+ WTc∆y)

+ 1
2∆xTTT

mWTm∆x.

(9)

This equation is the projected energy expression with TT
mWTm being

the reduced Hessian and TT
m(∂E(q0)

∂q
+ WTc∆y) is the reduced

gradient.
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Using the quasi-Newton condition applied to Eq.?? we find that the

effective gradient to be used in an Hessian update procedure applied

only to the molecular part of the Lagrangian Hessian is

h(q, λ) =
∂E(q)

∂q
− ∂r(q)

∂q
λ. (10)

The update procedure is commenced by evaluating a series of h(q, λ)

for different values of q and a fixed value of λ. A suitable value of λ is

the first order estimate of λ at convergence as given by

h(q0, λ0) = 0 (11)
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To conclude the presentation of the PCO approach of Anglada and

Bofill let us here summarize the major advantages the presented

method has as compared to a optimization/maximization procedure

applied to Eq. ??,

• the PCO approach have an explicit separation of the two subspaces

where as a optimization/maximization indirectly separates the two

subspaces by identifying the positive and negative eigen vectors of

the Hessian of the Lagrangian,

• the presence of negative eigen values in the Hessian of the La-

grangian restricts the selection of Hessian update ( variable metric)

methods while the PCO approach allows the use of the BFGS update

method to be applied to the reduced Hessian, and

• the the PCO technique by Bofill and Anglada does not explicitly
17



require λ to be determined.
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Restricted-step mechanism
CAS

• Restricted-Step Rational Function Optimization is used where the

max step length is dynamically changed to reflect the agreement

between the analytic gradients and the model function used in the

optimization.

• Similar arrangement is done for the constrained subspace.

• The max step length in both subspaces are are coupled.
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Constrained geometry optimization require 1st and 2nd order

derivatives of the constraints with respect to the internal coordinates.

This is trivial for Cartesian coordinates. For curvilinear coordinates

Baker et al suggested to include the constraints in the definition of the

redundant internal coordinate space followed by a linear transformation

after the generation of the non-redundant coordinates such that the

constraint equals on of the non-redundant coordinates. In this paper

we will present the required derivatives for the case when the

constraints not necessarily are explicitly expressed in the redundant

space of internal coordinates.

Given

∂

∂x
=

∂

∂q

∂q

∂x
(12)
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the 1st order derivative is trivially expressed as

∂r

∂q
=

(

∂q

∂x

)−1 ∂r

∂x
(13)

and the 2nd derivative is expressed as

∂2r

∂q 2
=

(

∂q

∂x

)−1




∂2r

∂x2
− ∂r

∂q

∂2q

∂x2





(

∂q

∂x

)−1

(14)
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Applications
CAS

• Single geometrical constraint constraint

• Multiple geometrical constraint constraints

• Minimum Energy Path

• Minimum Energy Cross Point

• Spacial extension of a intersection subspace
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Single geometrical constraint
CAS

As an example of a geometry optimization with a simple geometrical

constraint we study energy profile of the hindered rotation of ethane In

this series of optimizations we fix the HCCH dihedral angle, i.e. the

constraint is

r1 = φHCCH − φ0
HCCH. (15)

The geometry optimizations converged on average after 6 iterations for

each selected angle.
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Figure 1: C2H4 Hindered rotation.
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Multiple geometrical constraints
CAS

As an example of a geometry optimization with multiple geometry

constraints we study the energy surface of the triplet 1,2-dioxoethane

around the biradical minimum as a function of the OO bond distance

and the OCCO dihedral angle, i.e. the constraints are

r2 = rOO − r0
OO, (16)

and

r2 = φOCCO − φ0
OCCO. (17)

The geometry optimization typically converge after 5 iterations for

each selected pair of constraints.

25



Figure 2: The potential energy surface of triplet 1,2-dioxetane as a function of the OO bond

distance (Angstrom) and the OCCO dihedral angle (degrees).
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Minimum Energy Path
CAS

A minimum energy path (MEP) can be found by minimizing the

energy of the hypersphere with a fixed radius, where the origin of the

sphere is the geometry of some reference structure. For a MEP the

reference structure is the selected to be the resulting structure of the

previous step. If one starts from the TS one get the reaction path of

the Intrinsic Reaction Coordinates (IRC). The hypersphere

optimization is performed in mass weighted Cartesian coordinates,

R(q) = (
√

m1r1(q), (
√

m2r2(q), ..., (
√

mnrn(q)). (18)

For this purpose the constraint is defined as

r1 =
(
√

(R(q) − R(qref))2 − R√
Mtot

(19)

where R is the radius of the hypersphere and Mtot is the total mass of
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the system.

As an example we take 1,2-dioxoethane as it is dropped on the triplet

state surface at a geometry close to the singlet transition state

between the cyclic and biradical structure.
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Figure 3: The minimum energy path of 1,2-dioxoethane on the triplet state surface starting at

a geometry close to the singlet transition state.
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Minimum Energy Cross Point
CAS

A minimum energy cross point is found by finding the lowest energy of

the excited state at which two states are degenerate. The constraint is

the energy difference between the two states,

r = E1 − E0. (20)

Here we will as an example display some statistic in the search for a

intersection between the 3A and 1A state of N-methyl thioacetamid.

The statistic of the energy of the excited state, and the energy

difference, display a robust and conservative convergence.
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Figure 4: N-methyl thioacetamid.
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Figure 5: The excited triplet state energy of N-methyl thioacetamid as a function of the iteration

count during the MECP optimization.
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Figure 6: The energy difference as a function of the iteration count during the MECP optimiza-

tion.
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Exploring the conical intersection
CAS

To explore the spatial extension of the intersection subspace we will

combine the constraints of the intersection

r = E1 − E0. (21)

with those of the MEP search

r1 =
(
√

(R(q) − R(qref))2 − R√
Mtot

(22)

We demonstrate the results of such a search for acrolein.
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Figure 7: Intersection subspaces
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Important MOLCAS Keywords and notes
CAS

We will in the lab explore

• Constraints ... End of Constraints

• MaxStep

• definition of a hypersphere

• definition of energy differences

• how to define internal coordinates
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