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Relativistic calculations using Molcas

Per Åke Malmqvist
Department of Theoretical Chemistry

Chemical Center
Lund University

Abstract: Relativistic effects affect energies and properties to various degree
throughout the periodic table. Some of these effects have chemical implications

and must therefore be included to some extent in QC software. In MOLCAS, this
can be done at different levels of sophistication, ranging from the simple use of

relativistic ECP’s up to calculation of spectroscopic properties including spin-orbit
interaction.
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What is wrong with non-relativistic quantum chemistry?

Relativistic corrections will systematically affect the chemistry of the

heavier elements:

• Atomic ionization potentials, electron affinities, and excitation en-

ergies affect the energies of dissociation asymptotes, and thus also
the potential curves for bond breaking and positions and height
of barriers.

• For the heavier elements, there is a marked change in bond length
and in bond strength when relativistic effects are included.

• Some of these changes are just caused by relativity changing the

energy balance between the potential and the kinetic energies of
the electrons: ”Scalar relativity”.
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What is wrong with non-relativistic quantum chemistry?

Relativistic corrections can be important also for lighter elements.

• Barriers change, and many allowed crossings turn into avoided
crossings due to the lower symmetry of interactions involving spin.
The valence levels of atoms change, which appreciably affects the
bonding properties of atoms.

• Open shells of radicals, transition metal compounds, lanthanide

and actinide compounds, and excited states undergo spin-orbit
splitting.

• There are often a multitude of low-lying electronic states for some
or all conformations, especially along bond-breaking parts of re-
action paths. Intrasystem interactions make them all relevant to
reactivity.

Workshop 5, 2009



Relativity 4

Mainstream relativistic Quantum Chemistry.

The theoretical basis for relativistic quantum chemistry is the Dirac
one-electron, four-component equation, which replaces the
Schrödinger equation. Together with quantization of the

electromagnetic field, this gives a quantum field theory: Quantum
Electrodynamics.

It is now well known that for chemical applications, it is enough to
use approximate theories properly derived from QED, at the level of
electrons described using self-consistent four-component orbitals with

an added two-electron interaction.

Except for the transuranium artificial elements, it is furthermore

possible to simplify with acceptable accuracy to a two-component
formalism. There are several approaches. One popular scheme is

called Douglas-Kroll-Hess transformation.
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The scalar relativistic calculations.

The Douglas-Kroll transformation gives a two-component formalism

with an effective Hamiltonian, containing spin-dependent and
spin-independent terms.

Hess worked out a practical formulation in terms of matrix algebra.
Averaging over spin gives a spin-independent ’scalar’ Hamiltonian.

Technically, this just amount to changing the interactions by
changing the one- and maybe two-electron integrals.

This can be done for effective core potentials by parametrizing to

represent the scalar relativistic effects. It can also be done by
including in the integral generator the procedure for changing the

interactions.
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The SEWARD input:

In input to SEWARD, the keywords Douglas-Kroll, AMFI, and Finite Nucleus are used for
relativistic calculations. In addition, a relativistic basis set should be used. The ANO-RCC basis

set already gives Douglas-Kroll as default.

Relativistic effective core basis sets already includes relativity without any DKH corrections.

&GATEWAY

Symmetry

XY

Basis set

Au.ANO-RCC...6s4p3d1f.

Au 0.000 0.000 0.000

End of basis

Basis set

H.ANO-RCC...2s1p.

H 0.000 0.000 3.025

End of basis

End of input

&SEWARD

AngMom

0.0 0.0 0.0

End of input

The ANO-RCC basis set is designed for
such calculations, and are available for all
the periodic table.
The AMFI integrals are available for most
common basis sets, including many ECPs.
The Douglas-Kroll integrals are computed
using, internally in SEWARD, the given
basis set, uncontracted. This is useless
for e.g. STO-3G basis sets.
Calculations involving spin-orbit interac-
tions should be done with low symmetry,
maybe none at all, Ci, or C2, if this is nec-
essary in order to have symmetry equiva-
lent orbitals sharing the same irrep.
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The CASPT2 input:

For subsequent use in SO-RASSI, the RASSCF wavefunction ’interphase file’ JOBIPH is used.
The SO-RASSI will compute the Hamiltonian interaction matrix elements for the RASSCF wave
functions, and include the spin-orbit terms. However, for better accuracy, the Hamiltonian may
be ’dressed’ with the contributions from neglected dynamic correlation. This is done by letting

CASPT2 produce intermediate ’JOBMIX’ files.

&CASPT2 &END

Title

Iodine atom

Frozen

3 6

MultiState

3

1 2 3

End of Input

As usual, we wish to avoid complications
that arise from attempts to correlate the
core, so a number of orbitals are frozen.
Molcas can automatically select a ’de-
cent’ core, but we may choose to do it
manually.
The multistate input: Number of
RASSCF states to dress by CASPT2 (3),
and the serial number of these states
(The three lowest: 1,2,3).
The CASPT2 program will automatically
produce a new interphase file, called
JOBMIX. Several such files may be used
by the RASSI program.
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The Spin-Orbit Interaction

The spin-orbit interaction can be included by either of two approaches.

Two-component quantum-chemistry programs, such as EPCISO, include the spin
dependent part already from the start. (However, ’old’ users please note that
Valerie Vallets interface to the EPCISO program is no longer distributed with

MOLCAS, but can presumably be obtained from her).

The CASSCF/CASPT2/SO-RASSI approach uses standard Molcas programs to
obtain a small or sometimes large set of multiconfigurational, correlated states with

the scalar relativistic approach. Finally, the matrix elements of the spin-orbit
Hamiltonian over this set of states is computed. The final answer is thus obtained

using the ’spin-free’ states as a basis set of wave functions.
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The CASSCF/CASPT2/SO-RASSI approach

For heavy elements, relativistic effects including SO coupling affects

structure and even chemical valence.

In recent years, we have worked out a combination of quantum
chemical methods that seems able to handle many systems involving
such elements, at a satisfactory level of accuracy. Radicals, exotic

bond types and excited states are all handled at a uniform level of
approximations.

This approach has by now been applied to a number of chemical and

spectroscopic problems: see e.g. an article in PCCP 6, 2919 (2004).
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The Spin-Free basis states

The CASSCF or RASSCF wave functions are in a sense spinless. They are each
computed for a specified total spin, but the spin quantum number merely affects

the permutation symmetry of the electrons. There is no MS quantum number, nor
is the wave function assumed to be any eigenstate of Ŝz. The wave function can
be regarded as a joint representative of all possible spin states within the given

multiplet. This has consequences for the calculation of matrix elements. We can
use the Wigner-Eckart theorem (as will be explained later).

The CASSCF or RASSCF wave functions are invariant to rotations in spin space.
This makes them suitable as a basis for computing spin-orbit matrix elements also

for light elements, where a UHF approach would introduce an artificial spin
dependence.
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The Spin-Orbit basis states

Example: Suppose we have several calculations of RASSCF wave functions,
which yields seven ’spin-free states’:

State Symmetry Energy State Symmetry Energy
1 Singlet Σ -18994.19788204 5 Triplet Σ -18994.07376530
2 Singlet Σ -18994.02066430 6 Triplet ∆ -18993.99394833
3 Singlet ∆ -18993.98648409 7 Triplet ∆ -18993.99394833
4 Singlet ∆ -18993.98648409

Three of the states are triplet states, S = 1. Each of these has actually three
components, but this distinction was not made earlier. When the spin-orbit

interaction is to be added, a Hamiltonian matrix is formed with thirteen states.
The spin-orbit matrix elements are computed, for example
〈

SF 6,MS = 0|ŜSO|SF 3,MS = 0
〉

= −4700 cm−1

〈

SF 7,MS = −1|ŜSO|SF 6,MS = −1
〉

= +4707 cm−1

and so on, and these elements added to the Hamiltonian, which is then
diagonalized.
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State-specific RASSCF orbitals

The RASSCF depends on the use of an optimized set of orbitals in order to keep
the wave function compactly described by a manageable set of Slater determinants.
The orbitals for different states have in general different orbitals. This happens, i.e.

• if the textcolorDarkRedstatic polarity (dipole, quadrupole. . . ) of the states are
different

• if their amounts of textcolorDarkRedionic character (in valence-bond sense) are
different

• if the textcolorDarkRedoccupation of a local orbital, such as a transition metal
d or f orbital, differs
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The RASSI method

Matrix elements of one- or two-electron operators over a basis of RASSCF or
CASSCF wave functions are easily computed – even when the individual states

have individually optimized orbitals! This follows from a special property of the CI
space used to express the RASSCF wave function: that it is ‘closed under

deexcitation’. The MOLCAS package contains a program, called RASSI , which is
used to compute matrix elements such as transition dipole matrix elements, and

also (for various purposes) to compute matrix elements of the scalar Hamiltonian.
It is the latter use that has given the program its name: ‘RAS State Interaction’.

For the purposes of computing spin-orbit matrix elements, we use this program to
compute so-called reduced matrix elements of the spin-orbit hamiltonian, over the
spin-free basis. We then apply the Wigner-Eckart theorem to produce the matrix

elements over all the spin components.
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The AMFI integrals

The approach we have chosen is just as viable also if the two-electron

matrix elements are computed without any approximation. But
assuming that we do use the mean-field approximation, a further
simplification is possible. This amounts to replacing the reference

density matrix, which defines the mean-field approximation, with the
assumption that the first few atomic basis functions, for each atom,

are doubly occupied. The density is thus predefined, and the
resulting one-electron spin-orbit Hamiltonian is a fixed operator, just

like any other one-electron operator. This defines the so-called
Atomic Mean Field Integrals, which have been implemented in the

SEWARD program by Berndt Schimmelpfennig and Roland Lindh.
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The RASSI input:

The following RASSI input is actually from another calculation, showing the input for several
JOBIPH or JOBMIX files:

!ln -fs T.Job JOB001

!ln -fs S.Job JOB002

&RASSI &END

Nr of JobIph

2 3 3

1 2 3

1 2 3

Spin

EJob

Omega

End of Input

The JOBMIX files are linked using soft
links named JOB001, etc.
The Nr of JobIphs keyword is followed by:
The number of JOBMIX files (2), The
number of states to pick from each of
them (3,3), and the the serial numbers of
these states for the first file (The lowest
three, 1,2,3), then those from the second
file, etc.
EJob implies that energies are taken from
the JOBMIX files instead of being recom-
puted.
Omega implies that spin-orbit states are
annotated with their Omega quantum
numbers, appropriate for linear molecules.
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Sample study: The UO2 molecule.

The combination RASSCF/CASPT2/SO-
RASSI has been used for many studies
involving binding and/or spectroscopy of
compounds with heavy metals. These or-
bitals form the two triple bonds in UO2,
the three radical orbitals formed from U7s
and U5fφ of the 3Φu(Ω = 2, and three
important correlating orbitals.

Other studies include e.g. the discovery of the U2 quintuple bond, and many
organometallic complexes, some with remarkable bonding.

Workshop 5, 2009



Relativity 17

On the following slides are a short collection of technical details,
which are not needed in order to use the programs.
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The Dirac Hamiltonian (in an external static em field)

The conventional relativistic dynamics for an electron in a static four-potential,
Aµ = (φ/c,−A), is determined by the Lagrangian

L = −mec
2

√

1 − u2/c2 − eA · u + eφ

where u is the velocity. (Note: The electron charge is −e.)

The canonical momentum is thus

p =
∂L
∂u

=
meu

√

1 − u2/c2
− eA

and the Hamiltonian is obtained when pu − L is reexpressed as a function of p:

H = c
√

m2
ec

2 + (p + eA)2 − eφ
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The Dirac Hamiltonian, continued

Dirac used a Clifford algebra generated by four quantities (β,α), where
α = (αx, αy, αz) are three anticommuting square roots of −1, αβ = −βα, and

β2 = 1. With this algebra,

H = c
√

m2
ec

2 + (p + eA)2 − eφ = cα · (p + eA) + βmec
2 − eφ

The canonical momentum p is replaced by −ih̄∇ in a representation where the
state vectors are functions of position. Also, if we assume A = 0 and replace −eφ
with a potential energy V , we get the time-independent Dirac equation in the form

used in quantum chemistry:

−ih̄cα · ∇Ψ + (βmec
2 + V )ψ = EΨ

The noncommutative quantities cannot be represented by structureless scalars, but
can be represented by matrices. This requires wave functions to have several

components. At least four-dimensional matrices are needed.
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The Standard representation.

Dirac used four-by-four matrices to represent the quantities (β,α) in the form

β =

(

1 0
0 −1

)

, αx =

(

0 σx

σx 0

)

, αy =

(

0 σy

σy 0

)

, αz =

(

0 σz

σz 0

)

,

in terms of the two-component Pauli matrices,

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz

(

1 0
0 −1

)

.

The four-component wave function Ψ is then similarly composed of two
two-component parts:

Ψ =

(

ΨL

ΨS

)

, ΨL =

(

ψ1

ψ2

)

, ΨS =

(

ψ3

ψ4

)

The two-component parts ΨL and ΨS are called the large and small components,
respectively.

Workshop 5, 2009



Relativity 21

The Douglas-Kroll-Hess Hamiltonian

The Douglas-Kroll (DK) transformation is a sequence of unitary transformations
that remove the coupling of the large and small components of the Dirac
one-electron through some order in the one-electron external potential V̂ .

An ∞-order DK transformation achieves an exact splitting of the Dirac
Hamiltonian into two uncoupled two-component parts, one for the positive-energy

and one for the negative-energy orbitals.

The lowest-order Hamiltonian is obtained by the transformation to a representation
where energy, momentum and helicity are simultaneously diagonalized for the free

fields. The kinetic energy is already relativistic. The external potential, after
transforming, yields the other relativistic corrections.
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The Douglas-Kroll-Hess transformation

The Dirac Hamiltonian is

Ĥ = V̂ + E0β̂ + cp̂α̂

where V̂ is the external potential, E0 = mec
2 is the rest mass energy of the

electron, and the other symbols are the standard ones in relativistic quantum
mechanics.

The free-field Hamiltonian is the same without the term V̂ . It is easily shown to be
diagonalized by the unitary transformation matrix

Û = (2Ep(E0 + Ep))
−1/2

(

E0 + Ep + cp̂α̂β̂
)

in a basis of plane helicity waves.

The energy eigenvalues of these states are just the relativistic kinetic energy, ±Ep,
where

Ep =
√

E2
0 + p2c2
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A one-electron basis set approach.

Hess suggested that a suitable basis set would allow a matrix representation of the
operators Â and R̂, which are algebraic functions of p̂:

Û0 = Â
(

1 + R̂β̂
)

Â =

√

2Ep

E0 + Ep

R̂ =
cp̂α̂

E0 + Ep

⇒ Û †
0Ĥ0Û0 = Epβ̂

and that this approach could easily be extended to higher orders. The resulting
transformed potential terms can be subdivided into spin-free and spin-orbit terms.

In our approach, they are used separately.

We use a spin-free, or scalar, DK transformation when computing the conventional
one-electron integrals. The two-electron integrals are used untransformed; this is

known to be a workable approximation.
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The Spin-Orbit Hamiltonian

The one-electron term of the no-pair spin-orbit Hamiltonian is

Ĥ1el
SO =

∑

k

(

Ak

Ek +mc2

)

iσk · ((pkVext(rk) × pk)
(

Ak

Ek +mc2

)

(adopted from a manuscript by B. Schimmelpfennig. Notation is conventional).

The two-electron term has two contributions:

Ĥ2el
SO =

∑

k 6=l

AkAl

(

iσk

Ek +mc2
·
(

(pk
1

rkl

) × pk

)

1

Ek +mc2

)

AkAl

+
∑

k 6=l

AkAl

(

2iσk

Ek +mc2
·
(

(pl
1

rkl

) × pl

)

1

El +mc2

)

AkAl
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2nd quantized form of Ĥ1el

SO

Using spin-restricted orbitals, each term of the Hamiltonian is a

scalar product of two vectors. One is a vector-valued integral, the
other a vector excitation operator:

Ĥ1el

SO
=

∑

pq

(

V x
pqT̂

x
pq + V y

pqT̂
y
pq + V z

pqT̂
z
pq

)

where

T̂ x
pq =

1

2

(

p̂†αq̂β + p̂†β q̂α
)

T̂ y
pq =

i

2

(

−p̂†αq̂β + p̂†β q̂α
)

T̂ z
pq =

1

2

(

p̂†αq̂α − p̂†β q̂β
)
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2nd quantized form of Ĥ2el

SO

The corresponding two-electron terms are similar:

Ĥ2el
SO =

∑

pqrs

(

W x
pqrsT̂

x
pqrs +W y

pqrsT̂
y
pqrs +W z

pqrsT̂
z
pqrs

)

if we simply define two-electron vector excitation operators,

T̂ x
pqrs = T̂ x

pqÊrs − δrqT̂
x
ps

where the vector integrals can be simply expressed in the spin-other-orbit and
spin-same-orbit integrals, which turn out to be identical apart from a simple index

permutation.

But without going into any details, we note that the two-electron expression can
be fairly well approximated by a one-electron Hamiltonian, e.g. as done by Marian,
Wahlgren et al. This involves essentially the contraction of the two-electron vector

integrals over a one-particle reference density matrix.
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The WE-reduced transition spin density matrix

All matrix elements of ĤSO over the pair of components from two multiplets can
now be obtained from only three reduced matrix elements – one for V x, one for V y

and one for V z.

Similarly, in order to compute any such matrix element, it is sufficient to have
evaluated in beforehand one single set of elements σpq, which is then contracted
with suitable integrals to produce the matrix elements over wave functions. The

WE-reduced spin-density matrix elements can be computed from standard
spin-density matrix elements in either of three ways:

σAB
pq =

1√
2S + 1

〈

αS S|T z
pq|α′ S + 1S

〉

σAB
pq =

1

S

〈

αS S|T z
pq|α′ S S

〉

σAB
pq =

1√
2S − 1

〈

αS S − 1|T z
pq|α′ S − 1S − 1

〉
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The reduced matrix elements of V x, V y, V z:

Having obtained σAB
pq , it is contracted with the SO-coupling integrals

to form

V ABx =
∑

pq
σAB

pq V
x
pq

V ABy =
∑

pq
σAB

pq V
y
pq

V ABz =
∑

pq
σAB

pq V
z
pq

These three scalar quantities are then sufficient to form all the

(2S + 1)(2S′ + 1) SO-hamiltonian matrix elements over the
(2S + 1)(2S′ + 1) pairs of spin components defined from the two

’spin-free states’, A and B.
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The SO-coupling Hamiltonian matrix elements

In a Hamiltonian matrix over individual spin states, the following contributions can
then be calculated and added, as follows:

〈

SM |ĤSO|S + 1M ± 1
〉

= −
√

(S ±M + 1)(S ±M + 2)

2
(±V ABx + iV ABy)(1)

〈

SM |ĤSO|S + 1M
〉

=
√

(S + 1)2 −M2 V ABz (2)

〈

SM |ĤSO|SM ± 1
〉

= ±
√

(S ∓M)(S ±M + 1)

2
(±V ABx + iV ABy) (3)

〈

SM |ĤSO|SM
〉

= MV ABz (4)

〈

SM |ĤSO|S − 1M ± 1
〉

=

√

(S ∓M)(S ∓M − 1)

2
(±V ABx + iV ABy) (5)

〈

SM |ĤSO|S − 1M
〉

=
√
S2 −M2 V ABz (6)
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