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Basis sets and auxiliary basis sets

Basis sets (orbital basis): 

-kinetic energy, 

-nuclear-electron attraction,

-electron-electron repulsion

-etc.

Auxiliary basis sets (product basis):

-electron-electron repulsion



Basis Sets

● Segmented basis sets (STO-3G, 6-31G, etc.)

● Generally contracted basis sets (ANO-type)

● Cartesian vs Real Spherical Harmonics (6-31G family)

● Effective Core Potentials (ECP)

● Pseudo Potentials (PP)

The right basis for the right method!!



Note on basis sets

● EMSL Basis Set Exchange

● Be careful with the basis sets in relativistic calculations!

● Cartesian or Spherical Harmonic?



The basis set label says it all!

The Syntax: Element.Type.Author.Prim.Con.Aux.

Examples (general contraction):
● C.ANO-RCC.Roos.14s9p4d3f2g.8s7p4d3f2g.

● C.ANO-RCC...3s2p1d.

● Generics: C.ANO-RCC-VDZP, H.ANO-RCC-MB,...

Example (segmented contraction):

● C.6-31G..10s4p.3s2p.

● C.6-31G....



Density Fitting 
and 

the Resolution of Identity 

The DF method the procedure is of fitting 
of a “density” with an external 
predefined auxiliary basis.

The fitting coefficients are optimized by 
minimizing the error of
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The final equation expressing the fitting 
coefficients is

and the 2-electron integrals can be 
expressed as
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DF/RI specifics
● “Superfast” Coulombic contributions (e.g. pure DFT 

in Turbomole)
● Slow Exchange contribution evaluation
● Use of an external predefined 1-center auxiliary 

basis
● Fixed approximation, accuracy not controlled by 

single parameter!
● Auxiliary basis small but has to be tailored for each 

new method and valence basis set!
● Standard error in total energies below 0.01 kcal/mol/

atom
● Standard method for “large” calculations (.e.g. in 

biochemistry)
● analytic RI gradients and Hessians are available 



Cholesky decomposition
Beebe and Linderberg suggested to use 
the so-called Cholesky decomposition to 
approximate the two-electron integrals

By controlling the accuracy of the 
decomposition by a single parameter the 
so-called Cholesky-vectors have a rank 
which is significantly reduced as 
compared to the super-matrix, dito 
computational effort.

V=LLT



In an iterative procedure these recursive 
formulae are used to derive the 
Cholesky-vectors

and

a single parameter is used to control the 
accuracy!
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CD specifics
● Considerably reduced computational time as 

compared to conventional methods
● Accuracy controlled via single parameter
● Accuracy is independent of wf-method
● Methods has been developed for the use of 

CD in HF, DFT (pure and hybrid), MP2, CC, 
CASSCF and CASPT2.

● Used typically with an error in the total 
energy of 1.0D-6 -1.0D-8 hartree.

● Discontinious PES and no analytic gradients
● Fast Exchange evaluation has been 

developed (LK approach)



Unification

Observations:
● both are methods to approximate 2-

electron integrals

Beebe and Linderberg are actually rather 
explicit. They point out that “the CD is 
equivalent to a particular from of an 
inner projection procedure”. In this 
sense it is related to the RI/DF 
techniques. 



To see this take the working equation of 
the RI/DF approach

now transform, via a Gram-Schmidt 
procedure, the auxiliary basis to an 
orthogonal basis which will diagonalize 
the inverse matrix
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This finally yield that the Cholesky 
vectors are expressed as

and Cholesky-like vectors can be derived 
for the RI/DF approach as

Lij,K'=〈 ij∣K' 〉V K'K'
−1/2
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Notes
● Both CD and RI/DF are approximations 

of the complete RI operators
● CD is a numerical approximation based 

on the full product basis (1- and 2-
center auxiliary functions).

● RI/DF approximates by using a fixed 
externally predefined 1-center auxiliary 
basis, normally method dependent.

● 2C-CD can not have analytic gradients 
since with a fixed threshold the 
auxiliary basis is a function of the 
geometry.



What can CD learn from DF/RI?: 
the 1center approximation!

DF/RI has a (rather small) fixed 1-center 
auxiliary basis. This is key for analytic 
gradients to be possible.

Could we devise an approximation of the 
CD in which only the 1-center products 
are used in the procedure? YES, 1C-CD, 
but is it accurate?

Use aCD/acCD auxiliary basis sets for 
general RI/DF calculations.



Test set: 21 reactions, 
B3LYP 631G structures



1Center CD 
vs.

 full CD (SVWN)



1Center CD 
vs.

 full CD (B3LYP)



1Center CD 
vs.

 full CD (MP2)



Observations

● 1C-CD does not degrade the accuracy 
significantly!

● in the 1C-CD approximation a fixed 
auxiliary basis set is used, hence we 
can compute analytic derivatives!

● 1C-CD the decomposition time is 3-4 
times faster than the full CD with the 
same threshold.



What can DF/RI learn from CD?:
the Cholesky auxiliary basis sets!

Given the accuracy of the 1C-CD 
approach, could 1C-CD be used to 
design general DF/RI auxiliary basis 
sets which are method-free?

To investigate this we designed some 
DF/RI basis sets by using the 1-center 
product auxiliary basis used by the 1C-
CD approach.

The RI/aCD(acCD) approach.



Accuracy assessment / G2 test suite



Summary / RI&CD
● the DF/RI,  CD, and 1C-CD methods are 

closely related.
● 1C-CD approximation is equivalent in 

performance and accuracy to DF/RI
● 1C-CD approach has analytic 

derivatives
● aCD/acCD approach can be used to 

derive “method-free” RI auxiliary basis 
sets

● The better valence basis set the 
smaller relative size of the aCD 
auxiliary basis set



New Implementations

● RI/aCD(acCD) on-the-fly basis set

● Unified code for RI/DF and CD post 

integral processing.



MOLCAS keyword
Input to use in the &Seward input section 

to activate Cholesky and RI options
● Cholesky
● ChoInp; 1-Center; EndCho
● RICD; aCD or acCD
● RIJ
● CDTHreshold

These options will provide significant 
computational speed up with 
insignificant loss of accuracy!



MP2 example

MP2/cc-pVTZ 1924 bfn 



CASPT2 example

● CD-CASPT2/CASSCF(14-in-16) (810 bfn 
no symmetry, 964 C

2
 symmetry)
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