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When is CUDA worthwhile?

100% = 2090 seconds = total time  for 109666421 calls

 20% = total time  for 1088 calls that were large
 enough to allow the overhead of CUDA calls

 80% = total time  for 109665333 calls that
  were shorter than 0.02 seconds, i.e., 
  too short for CUDA.
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Hardware development is not driven by the needs of computational chemistry. At the same time, quite often these new technologies can not be used 
directly, and require some modifications of the application software. Substantial time can be needed to adjust computational codes and take advan-
tage of new computer architectures.

A modern GPU is a highly parallel and multi-threaded processor with very high flop performance and internal memory bandwidth. Nvidia has made 
these features useful for non-graphical tasks, creating an environment which includes code development tools, and the high performance libraries 
CuBLAS and CuFFT. A quantum chemistry software is typically rich in BLAS calls.
This suggests a simple approach to GPU acceleration of QCh code: can we simply use a BLAS library that implements the BLAS calls by performing 
the corresponding CuBLAS ones? This idea is simple enough to be tested at once: we run MOLCAS code with the only modification that the matrix 
multiplication code was replaced by a wrapper to CuBLAS_DGEMM.Test calculations were done on a Tesla GPU, provided by STFC Daresbury Lab. 
However, the transfer of data between GPU card and CPU requires transfer via temporary allocated memory, and takes time. It is fastest if a portion 
of memory can be 'pinned' and reused for several calls

Processors capacities have increased exponentially, following the famous Moore’s law. The development of computational units go now to a new 
dimension: instead of increasing the number of transistors on the same chip, various parallelization techniques are used: communication between 
CPUs via network, via bus on the same mainboard and finally units can be combined as computational cores on the same CPU. 

On the right are shown results of parallelization over nodes up to 24 nodes. The tests 
were made on LUNARC cluster with relatively slow Gigabit connection. Numerical gradi-
ent shows a perfect scaling until the number of nodes is bigger than the number of dis-
placements. Computing and usage of integrals needs small data transfer and thus 
shows an almost perfect scaling. The result of RASPT2 for a polyyne system is also 
shown, to be representative of small molecules with a big active space. The scaling is 
clearly better for this system since only the many-particle density matrices generation in 
the RASPT2/CASPT2 code is parallelized yet. 
Leading CPU manufacturers claim that in a near future, CPUs with 96 and more cores 
will be available. Quantum chemical codes should be adapted in order to use efficiently 
these technologies.

Solid State Drives and cheap memory cards used e.g. in a camera or as USB memory 
stick have quite different read and write timings compared to conventional disks. A test 
MOLCAS job running on an external memory drive (connected via the USB 2.0 inter-
face) showed a surprising result: RASSCF was running slightly faster and CASPT2 was 
only 17% slower, than using the conventional HDD.

These hardware implementations have different transfer speed of data between computational units, different 
transfer speed between CPUs and memory and different cache size per CPU. So different computational algo-
rithms can benefit differently from these hardware solutions.
MOLCAS code[2] uses three kinds of parallelization algorithms. Independent calculations (Numerical Gradients), 
computing of parts of integrals (SEWARD+wave function calculation) and fine grain parallelization (multi-particle 
density matrices in CASSCF and CASPT2). Except for the last kind of parallel algorithms, the amount of data 
transferred between CPUs is fairly small.We selected benzene dimer as a test case, with 528 basis functions, 
which corresponds to an average calculation with MOLCAS code.
Differences in scaling of different modules for parallelization over cores are shown on the left. Clearly, paralleliza-
tion over cores is not efficient, although the different modules behave differently. Thus, Numerical Gradients and 
SEWARD see a small improvement by using more cores on the same CPU, while CASSCF and CASPT2, code 
are even slower in parallel. The situation is better with Cholesky decomposition technique, where I/O is less im-
portant.

Using of CuBLAS_DGEMM is clearly faster for huge matrices. RASSCF and 
CASPT2 codes spend up to 80% of the time in DGEMM. But do we have such 
large matrices in a typical calculation? Polyyne was used as a representative 
RASSCF calculation with 234 basis function and a 4/8/4 active space.
The statistics of DGEMM calls for this test case shows that the percentage of 
big matrices is very small. Also, these sizes are asymmetric, while 
CUBLAS_DGEMM is more efficient for square matrix.
Efficiently batched algorithms such as the one in MOLCAS have less advan-
tages from GPU technology. Increasing of connection speed between CPU 
and GPU might change the conclusion completely.

 0.5

 1

 2

 1  2  4

Sp
ee

d-
up

n (cores)

Parallelization over n cores

    SEWARD
Cho-CASSCF

 Num. Grad

    CASSCF

Cho-SEWARD

    CASPT2

Cho-CASPT2


