
Files In Memory: New RAM based I/O Layer in MOLCASFiles In Memory: New RAM based I/O Layer in MOLCAS
                         Victor P. Vysotskiy, Valera Veryazov 

• CASPT2 I/O 

• Files In Memory

• Benchmarks

• Results

• References

• CASPT2 I/O 

• Files In Memory

• Benchmarks

• Results

• References

 

 For I/O benchmarking were selected several typical 
CASPT2/RASPT2 jobs. In addition, the benchmark set 
was extended by adding one MCLR test.

 The ext3 FS was installed on all storage devices and 
their was mounted with the “noatime” option. The Lustre 
FS was tuned within “lfs -c 1 -s 1m”. command.

 FiM provides the best performance;

 CASPT2 : SSD outperforms HDD ~1.1-1.6x;
        MCLR: SSD outperforms HDD >10x;

 FS Caching remarkably improves I/O
throughput speed by factor of 2; 

 FiM over Lustre FS provides virtually 
the same performance as a local HDD;

 Within FiM it is now possible to run MOLCAS
on a diskless HPC node/workstation without
performance penalty;

 FiM is useful and powerful tool for data analysis,
debugging.

                                         http://www.molcas.org

[1] K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, J. Phys. Chem. 94, 5483-5488 (1990).
[2] P.-Å. Malmqvist, K. Pierloot, A. R. Moughal Shahi, C. J. Cramer, L. Gagliardi, J.Chem. Phys. 128, 204109(1-10) (2008).
[3] F. Aquilante, L. D. Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, 
R. Lindh, J. Comput. Chem. 31, 224-247 (2010).
[4] Cray T3ETM Fortran Optimization Guide - 004-2518-002, Chapter 5. Input/Output.

 Multiconfigurational second-order perturbation method CASPT2 is known as a reliable computational tool for the electronic structure
calculations. The original CASPT2 code in MOLCAS has been developed in the beginning of 90s [1].The main development of the code
focused on algorithmic improvements, for example, recent development allows to use RASSCF reference wavefunction [2], and the Cholesky  
Decomposition method [3]. The change of hardware architecture was addressed much less. It is well know fact that a speed of a typical CASPT2 
calculation is limited by storing and reading data, i.e. it is I/O-bound problem. Among CASPT2 scratch files, only the two-electron integrals or 
Cholesky vectors files are read sequentially for several times, while the rest files are accessed constantly and randomly. In other words, the 
CASPT2 I/O workload is dominated by random write and read operations, which is the worst case scenario for conventional HDD, due to the 
excessively high latency of spinning hard disks. One may expect that a caching mechanism of a underlying filesystem (FS) should improve the 
overall I/O performanceas long as there is no large files and available memory is sufficient for buffering all needed data. However, the caching 
mechanism is not selective in a sense that it tries to buffer all opened/accessed files simultaneously/uniformly, regardless their sizes and I/O 
access patterns.Generally speaking, without  any assumptions about certain FS and its caching mechanism, the best possible performance of 
the CASPT2 module can be obtained only by using an electronic data storage device with the lowest available latency and the best random I/O 
performance like, e.g.,Random Access Memory (RAM), or Solid State Device (SSD) . 

I/O Operations:
(read,write)=memcpy

~instant seek time

 Although nowadays most of the computers are equipped with large amount of memory, neither 
CASPT2 code itself, or operating system by caching I/O, can use this memory in efficient way. In 
order to utilize RAM directly for I/O we have developed a new framework called as “Files in 
Memory” (FiM). The key idea of FiM is to keep a scratch file in RAM entirely instead of using a 
HDD/SSD disk. In sharp contrast to FS caching, within FiM one has an explicit and transparent 
control on a housing data in RAM. By design, FiM is capable to place data in Sys V shared 
memory segments and thus can be shared between several different MPI processes running on 
the same node at no extra message passing cost.
 Unlike to the memory-resident I/O layer of CRAY FFIO [4], FiM is a general framework and 
can be used on any POSIX compliant operation system such as Linux, AIX, Windows, So-
laris.
 The beauty of FiM that it is easy to use for both MOLCAS end user and developer: there is no 
need to change source code, one just needs to edit an external resource file! In addition, FiM pro-
vides environment variables that control the execution of MOLCAS and automatic (dynamical) 
switching between I/O layers at runtime.

C9H7NO4    (A)

C16H12N2 (C)

C21H32N (D)

C10H14O4S (B)

 Hardware configuration: 
 -  2-way Intel Xeon CPU E5630 (2.53GHz);
 -  48 Gb of DDR3 (1066MHz) RAM;
 - 2 Intel SSDSC2MH250A2 250GB are at-
tached to the RocketRaid 62x SATA RAID 6Gb/s 
Controller (RAID1);
 - 1 HDD WDC WD10EURS-630AB1 SATA II 
1000 Gb.
 
 The ext3 FS was installed on all storage de-
vices and disks were mounted with the “noatime” 
option. The Lustre FS was tuned within “lfs -c 1 -s 
1m” command.
 
 The “NO FS_CACHING” results were obtained 
by using only 4Gb of RAM (the rest 44 Gb of RAM 
were physically removed prior benchmarking).

 For I/O benchmarking were selected several 
typical CASPT2/RASPT2 jobs. In addition, the 
benchmark set was extended by adding one 
MCLR test.

FiM
SSD  (FS_CACHING)
HDD (FS_CACHING)
SSD  (NO FS_CACHING)
HDD (NO FS_CACHING)
Lustre PFS

R
el

at
iv

e 
C

A
SP

T
2/

M
C

L
R

 T
im

in
gs

 (%
)

http://www.molcas.org

 FiM provides the best I/O performance;

 CASPT2 : SSD outperforms HDD ~1.1-1.6x;
        MCLR: SSD outperforms HDD >10x;

 In the case of HDD, FS Caching remarkably 
improves I/O throughput speed; 

 FiM over Lustre FS provides virtually the 
same performance as a local HDD;

 Within FiM it is now possible to run MOLCAS
on a diskless HPC node/workstation without
performance penalty; 

 FiM can help make more efficient use of the 
shared memory on SMP nodes, thus mitigating 
the need for explicit intra-node communication.

Theoretical Chemistry, Chemical Center, P.O.B. 124, Lund 22100, Sweden, E-mail: Victor.Vysotskiy@teokem.lu.se


