

Parallelization of CASPT2 code

Challenges in parallelization of CASPT2 [2] Active Density Matrices (~N⁶_{act}) scales well (independent tasks) tasks bound by memory bandwidth diagonalization handled by ScaLAPACK Right Hand Side (~N²_{inact}N²_{virt})

Parallel Cholesky vectors CASPT2 distributed across processes aj Cholesky-driven RHS: large accumulate communication and I/O overhead the second second

distributed across processes aj HS: large d I/O overhead (aj|cl)

RASPT2 (527 bfn. 35 active orbitals)

New developments in multiconfigurational Quantum Chemistry

Per Åke Malmqvist, Steven Vancoillie, Victor P. Vysotskiy and Valera Veryazov

Theoretical Chemistry, Chemical Center, P.O.B. 124, Lund 22100, Sweden

Multiconfigurational methods in Quantum Chemistry are precise and reliable tools to study the electronic structure of ground and excited states of molecular systems. The recent developments of multiconfigurational methods implemented in the MOLCAS package [1] opens up new horizons for research in the field.

RASPT2: state-of-the-art calculations of chromium dimer

scales reasonable tasks bound by memory bandwidth tasks bound by memory/process Preconditioned Conjugate Gradient scales poorly (in theory not scalable) lots of communication tasks bound by memory bandwidth

Speed-up in 3-body density matrix diagonalization, PCG limits scalability

number of processes

The ground state potential curve of the chromium dimer (Cr₂) has long been a challenging test case for computational quantum chemistry.

There is a strong dependence on the IPEA shift when using a limited active space that does not include the double-shell effect. The IPEA shift was empirically set to 0.45 a.u. to match the

RASPT2 (12,22)/(12,12)/SD

Computational cost:

$Cr_2 D_{2h} 360 bfn$	
Integrals (CD)	12 min
CASSCF(12,12)	2 min
CASPT2(12,12)	1 min
RASSCF(12,22)/(12,12)/SD	12 h
RASPT2(12,22)/(12,12)/SD	1 h
RASSCF(12,22)/(12,12)/SDTQ	21h (CI only)
RASPT2(12,22)/(12,12)/SDTQ	5h (parallel 4x2)
hardware: 2.2GHz Intel Xeon E5-2660 (8 cores) 32Gb RAM	

experimental curve

R_{Cr-Cr} (Å)

When including the full double-shell effect in a RAS3 space with single and double excitations, the IPEA dependency is much smaller, and the default value (0.25 a.u.) is satisfactory. The bonding energy is within 5.0 kcal/mol of the experimental value, and the calculated PES parallels the experimental curve.

For two state functions Ψ_1 and Ψ_2 , the bra and the ket binatural orbitals [3] express concisely the transition density matrix:

Dominating binatural orbitals of time-dependent electron transfer in Au-PDDT-Au. (Bra orbital above, ket below)

$$\gamma(\mathbf{r}_1, \mathbf{r}_2) = \sum_K \lambda_K \phi_K^{\text{Bra}}(\mathbf{r}_1) \phi_K^{\text{Ket}}(\mathbf{r}_2)$$

where the sum over K is short (typically 1-3). The binatural orbitals represent the propagator, $\langle \Psi(t)|\hat{\phi}^{\dagger}(\mathbf{r}_{1})\hat{\phi}(\mathbf{r}_{2})|\Psi(0)\rangle$ where $|\Psi(t)\rangle = \exp(-i(\hat{H}-E)t|\Psi(0)\rangle$

Bra and ket orbitals at times 0ps, 105ps and 210ps. Starting at time 0, the electron is on the left Au atom. After 210ps, it has moved to the right Au atom. At intermediate times, the orbitals are complex; the ket orbital is similar to that of the original transition density, the real part of the bra orbital has a growing amplitude on the right Au and a shrinking one on the left Au. The interplay of real and imaginary part reflects the current density. Current flows, although slowly, and there is never much radical density on the PDDT chain.

Binatural orbitals for any state functions

CASPT2 calculations of water dissociation on oxide surfaces

References:

Dissociation of water molecule on MgO and CaO surface.

Surface model: cluster M₁₄O₆ (M=Mg,Ca) embedded into electrostatic field and AIMP pseudo-atoms; partially frozen fragments [4]. Initial geometry scan of water position on the surface: DFT/B3LYP, followed by CASSCF/CASPT2 calculation (12/12) Physical sorption (no structural changes neither at surface or at adsorbed molecule) of water leads to two geometries: with two hydrogen bonds (PS*) or with one hydrogen bond (PS). Chemical sorption (CS) includes possible dissociation and surface relaxation MgO: no dissociation of water

CaO if all atoms on the surface are fixed: no dissociation CaO with surface relaxation: barrier free dissociation

http://www.molcas.org

[1] F. Aquilante, L. D. Vico, N. Ferré, G. Ghigo, P. Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, R. Lindh, "MOLCAS-7: The next generation", J. Comput. Chem. 31, 224-247 (2010).

[2] S. Vancoillie, M. G. Delcey, R. Lindh, V. Vysotskiy, P.-Å. Malmqvist, V. Veryazov, "Parallelization of a multiconfigurational perturbation theory", J. Comp. Chem. 34, 1937–1948 (2013) [3] P. Å. Malmqvist, V.Veryazov, "The binatural orbitals of electronic transitions", Mol. Phys. 110, 2455-2464 (2012)

[4] V. P. Vysotskiy, J. Boström, V. Veryazov "A new module for constrained multi-fragment geometry optimization in internal coordinates implemented in the Molcas package", J. Comp. Chem., 34, 2657-2665 (2013).