
 CASPT2! ... but can it fly? CASPT2! ... but can it fly?
 Victor P. Vysotskiy, Valera Veryazov

• CASPT2 I/O

• Benchmarks
 Tests

 Results

• CASPT2 BLAS3
 DGEMM: GPU vs CPU

• Molcas v8.0

• CASPT2 I/O

• Benchmarks
 Tests

 Results

• CASPT2 BLAS3
 DGEMM: GPU vs CPU

• Molcas v8.0

 Multiconfigurational second -order perturbation method CASPT2 is known as a reliable computational tool for the electronic structure
calculations. The original CASPT2 code in MOLCAS has been developed in the beginning of 90s.The main development of the code
focused on algorithmic improvements, for example, recent development allows to use RASSCF reference wavefunction. The change of
hardware architecture was addressed much less. It is well know fact that a speed of a typical CASPT2 calculation is limited by storing and
reading data, i.e. it is I/O-bound problem. Among CASPT2 scratch files, only the two-electron integrals or Cholesky vectors files are read
sequentially for several times, while the rest files are accessed constantly and randomly. In other words, the CASPT2 I/O workload is
dominated by random write and read operations, which is the worst case scenario for conventional HDD, due to the excessively high latency
of spinning hard disks. One may expect that a caching mechanism of a underlying filesystem (FS) should improve the overall I/O performance
as long as there is no large files and available memory is sufficient for buffering all needed data. However, the caching mechanism is not
selective in a sense that it tries to buffer all opened/accessed files simultaneously/uniformly, regardless their sizes and I/O access patterns.
Generally speaking, without any assumptions about certain FS and its caching mechanism, the best possible performance of the CASPT2
module can be obtained only by using an electronic data storage device with the lowest available latency and the best random I/O performance
like, e.g.,Random Access Memory (RAM), or Solid State Device (SSD).

 Although nowadays most of the computers are equipped with large amount of memory, neither CASPT2 code itself, or operating system by
caching I/O, can't use this memory in efficient way. In order to utilize RAM directly for I/O we have developed a new framework called as
“Files in Memory” (FiM). The key idea of FiM is to keep a scratch file in RAM entirely instead of using a HDD/SSD disk. In sharp contrast to
 FS caching, within FiM one has an explicit and transparent control on a housing data in RAM. The beauty of FiM that it is easy to use for both
 MOLCAS end user and developer: there is no need to change source code, one just needs to edit an external resource file!

 For I/O benchmarking were selected several typical
CASPT2/RASPT2 jobs. In addition, the benchmark set
was extended by adding one MCLR test.

 The ext3 FS was installed on all storage devices and
their was mounted with the “noatime” option. The Lustre
FS was tuned within “lfs -c 1 -s 1m”. command.

 FiM provides the best performance;

 CASPT2 : SSD outperforms HDD ~1.1-1.6x;
 MCLR: SSD outperforms HDD >10x;

 FS Caching remarkably improves I/O
throughput speed by factor of 2;

 FiM over Lustre FS provides virtually
the same performance as a local HDD;

 Within FiM it is now possible to run MOLCAS
on a diskless HPC node/workstation without
performance penalty;

 FiM is useful and powerful tool for data analysis,
debugging.

CASPT2 code spends up to 80% of the computational time in DGEMM.

 Intel MKL v10.2 on Intel
Xeon E5520 (2.27 GHz)

 CUDA BLAS v4.1 on NVIDIA
Tesla M2050.

 Pinned memory means that
allocated memory pages remain
in real RAM all the time.

 In Data reuse scenario the
C matrix was resided on the
GPU device

 The previous GPU hardware
generation and corresponding
CUDA libraries was 4x times
slower than the current one. In
particular, the Npinned and Npaged
crossing points for Tesla S1070&
&cuBLAS v2 are 796 and 1845,
respectively.

Planning features and changes:

 FiM with data compression (in progress);
 Global Arrays free (MPI-2 and new Memory Allocator);
 Better support of many-core architectures, especially regarding the BLAS3 matrix operations.

 http://www.molcas.org

 C

*)The reported time corresponds to the slowest cacheless computation on HDD, so-called “HDD (NO FS_CACHING)”

FiM
SSD (FS_CACHING, RAID0)
HDD (FS_CACHING)
SSD (NO FS_CACHING)
HDD (NO FS_CACHING)
Lustre PFS

R
el

at
iv

e
C

A
SP

T
2/

M
C

L
R

 T
im

in
gs

 (%
)

G
flo

ps
/s

0

50

100

150

200

250

300

Matrix size n
512 1024 2048 4096

MKL 1 core (SEQ)
MKL 4 cores (MT)
MKL 8 cores (MT)

cuBLAS data reuse PINNED
cuBLAS data reuse PAGED
cuBLAS PINNED
cuBLAS PAGED

G
flo

ps
/s

0

25

50

75

100

125

150

Matrix size n
128 256 512

NPAGED=455

NPI
NNED

=2
24

In
te

gr
al

 (%
)

0

20

40

60

80

100

Matrix size n
0 500 1000 1500 2000 2500 3000

A
B1

PA
G

ED

PI
N

N
ED

Goal

code refactoring

Theoretical Chemistry, Chemical Center, P.O.B. 124, Lund 22100, Sweden, E-mail: Valera.Veryazov@teokem.lu.se

