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The Slater determinant
CAS

Using the spin-orbitals, we can construct anti-symmetric N -electron

functions as Slater determinants:

ΦK = Â{φK1(x1), φK2(x2) · · · , φKN(xN)}

where x = r, s and Â is an anti-symmetrizer. The number of such

determinants is

K = (
2m

N
)
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Weyl’s Formula
CAS

Number of molecular obrtals: n

Number of spin-orbitals: 2n

Number of electrons: N

Spin qauntum number S

The Number of configuration state functions (CSF’s) is:

K(n,N, S) =
2S + 1

n + 1





n + 1
1
2N − S









n + 1
1
2N + S + 1





3



The number of singlet states

N/n 2 4 6 8 10 12 14 16 18 20

2 3 10 21 36 55 78 105 136 171 210

4 1 20 105 336 825 1716 3185 5440 8721 13300

6 - 10 175 1176 4950 15730 41405 95200 197676 379050

8 - 1 105 1764 13860 70785 273273 866320 2372112 5799465

10 - - 21 1176 19404 169884 1002001 4504864 * *

12 - - 1 336 13860 226512 2147145 * * *

14 - - - 36 4950 169884 2760615 * * *

16 - - - 1 825 70785 2147145 * * *

18 - - - - 55 15730 1002001 * * *

20 - - - - 1 1716 273273 * * *

22 - - - - - 78 41405 4504864 * *

24 - - - - - 1 3185 866320 * *

26 - - - - - - 105 95200 * *

28 - - - - - - 1 5440 2372112 *

30 - - - - - - - 136 197676 *

32 - - - - - - - 1 8721 5799465

34 - - - - - - - - 171 379050

36 - - - - - - - - 1 13300

38 - - - - - - - - - 210

40 - - - - - - - - - 1
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The Full CI Method
CAS

We can expand the wave function in the determinants:

Ψ =
∑

K

CKΦK

Inserting into the Scrödinger equation and integrating gives the Secular

Equation:

∑

L

(HKL − EδKL)CL = 0

This is called Full CI and becomes an exact solution in the limit of a

complete basis set.
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Molecular Orbitals for the H2 Molecule
CAS

HA HB

R

Use a minimal basis set: (1sA, 1sB)

The MO’s are given by symmetry:

σg = Ng(1sA + 1sB), σu = Nu(1sA − 1sB)

The closed shell HF configuration is: Φ1 = (σg)
2 =

√

1
2
|σgα, σuβ|

With the spin-orbitals: φ1 = σgα and φ2 = σuβ
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Dissociation of H2 in closed shell HF Theory
CAS

The HF function is: Φ1 =
√

1
2 |σgασgβ| = σg(1)σg(2)Θ2,0,

where σg(1) = Ng(1sA + 1sB).

Φ1 = N 2
g {1sA(1)1sA(2) + 1sB(1)1sB(2)

+ sA(1)1sB(2) + sB(1)1sA(2)}Θ2,0.

Thus we have for large R: Φ ∝ Φ(H + H) + Φ(H+ + H−).

The energy at dissociation is:

E(r = ∞) = 1
2
(E(2H) + E(H+) + E(H−)) ≈ E(2H) + 6.66 eV.
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Correct Wave Function for R = ∞
CAS

Φ∞ = {sA(1)1sB(2) + sB(1)1sA(2)}Θ2,0

with no ionic terms. They are important at R = Re but should disappear

at R = ∞. Now introduce a new configuration:

Φ2 =

√

√

√

√

1

2
|σuα, σuβ| = σu(1)σu(2)Θ2,0

σu(1) = Nu(1sA − 1sB)

Φ2 = N 2
u{1sA(1)1sA(2) + 1sB(1)1sB(2)

− sA(1)1sB(2) − sB(1)1sA(2)}Θ2,0.

8



The Two Configurational Solution
CAS

We find immediately that:

Φ∞ =

√

√

√

√

1

2
{Φ1 − Φ2}

Assume now for all R:

Φ = C1Φ1 + C2Φ2

The coefficients depend on R:

R ≈ Re C1 ≈ 1 C2 ≈ 0

R = ∞ C1 ≈
√

1
2 C2 ≈ −

√

1
2
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The Energy of H2 as a Function of the Distance

R
CAS
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Re(Å) De(eV) ωe(cm
−1)

SCF 0.736 3.63 4424 (Φ1)

MCSCF 0.757 4.13 4355 (Φ1, Φ2)

Expt. 0.741 4.75 4401
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A More Complicated Example: Cr2
CAS

The chromium atom has six unpaired electrons, (3d)5(4s), 6S

These atomic orbitals can be used to construct the following molecular

orbitals:

bonding: 4sσg, 3dσg, 3dπu, 3dδg

antibonding: 4sσu, 3dσu, 3dπg, 3dδu

A sextuple bond can be formed!

Around 3000 configurations are needed for a correct description of the

dissociation process.
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Active Orbitals and the Complete Active Space
CAS

Construction of the MCSCF wave function:

Divide the occupied MO’s into two groups:

Inactive Orbitals Occ.No. 2

Active Orbitals Occ.No. Varies

Include all electronic configurations that can be obtained by distribut-

ing the active electrons among the active orbitals ion all possible ways

consistent with a given overall spin and space symmetry.

This is the Complete Active Space (CAS) wave function

The CASSCF method: Optimize the CI coefficients and the MO’s for a

CAS wave function.
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Orbital Spaces for CAS Wave Functions
CAS

Inactive Orbitals

Active Orbitals

Unoccupied Orbitals
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The Restricted Active Space (RAS) SCF

Method
CAS

Divide the occupied MO’s into four groups:

Inactive Orbitals Occ.No. 2

RAS1 Orbitals Max number of holes

RAS2 (Active) Orbitals Occ.No. Varies

RAS3 Orbitals Max number of electrons

This is thus a CAS with the additional possibility to excite out of some

doubly occupied orbitals and into some virtual orbitals.
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RAS Orbital Spaces
CAS

Inactive Orbitals

RAS 1 Orbitals

RAS 2 Orbitals

RAS 3 Orbitals

Unoocupied Orbitals
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Some Typical Ras Wave Functions
CAS

• Closed Shell SCF (RAS1, RAS2, RAS3 empty).

• SDTQ...CI with a closed shell reference function (RAS2 empty).

• CASSCF (RAS1 and RAS3 empty).

• SDCI with a CASSCF reference (max two holes in RAS1 and max

two electrons in RAS3).

• Polarization CI (max one hole in RAS1).

• RASSCF is useful to determine active spaces and input orbitals for

CASSCF.
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The zeroth order Hamiltonian in CASPT2
CAS

In second order perturbation theory you solve a set of linear equations:

(Ĥ0 − E0)Ψ1 = V̂ Ψ0

The zeroth order Hamiltonian Ĥ0 is defined in terms of a one-electron

Hamiltonian (usually) F̂ :

Ĥ0 = P̂0F̂ P̂0 + P̂IF̂ P̂I

where P̂0 and P̂I are projection operators onto the reference function

and the interacting configuration space, respectively.
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The generalized Fock operator
CAS

The generalized Fock operator:

F̂ =
∑

p,q
FpqÊpq,

where the matrix elements are defined as:

Fpq = hpq +
∑

r,s
Drs[(pq|rs) −

1

2
(ps|rq)]

for inactive, i, half-occupied ,t, and virtual, a, orbitals we have:

Fpp = −(IP )p

Faa = −(EA)a

Ftt = −
1

2
((IP )t + (EA)t)
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The new H0-IPEA
CAS

The diagonal of the Fock matrix for active orbitals:

Fpp = −
1

2
(Dpp(IP )p + (2 − Dpp)(EA)p) (1)

Shift for exciting into this orbital:

σ(EA)
p =

1

2
Dpp((IP )p − (EA)p) (2)

Shift for exciting out of this orbital:

σ(IP )
p = −

1

2
(2 − Dpp)((IP )p − (EA)p) (3)

Replace ((IP )p − (EA)p) with an average value: ǫ:

σ(EA)
p =

1

2
Dppǫ (4)

σ(IP )
p = −

1

2
(2 − Dpp)ǫ (5)

23



Dissociation energies for diatomic molecules
CAS
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Choosing the active space
CAS

• Sometimes trivial, sometimes more difficult, sometimes impossible.

• It is necessary to know something about the electronic structure!

• Two problems must be solve: The number of active orbitals in each

symmetry and the shape of them (the input orbitals)

• Use MOLCAS-GV to identify the orbitals in the active space.

• In difficult cases, run RASSCF calculations with larger active space

• Ideally: orbitals with occupation numbers in the range 0.02-1.98

should be active.
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The active space for the molecule H2CUH2
CAS
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Main group molecules
CAS

• For Li, B, C: choose 2s,2p as active (four orbitals).

• For N, O, F: 2s can be left inactive (three orbitals).

• A molecule like S3O needs twelve active orbitals (16in 12). This

allows all transformations to be studied.

• CH bonds can often be left inactive. A molecule like butadiene

(C4H6) then needs 12 active orbitals (12in 12). You can now break

all CC bonds.

• A long alkyl chain with an active end group only needs orbitals there

to be active.

• The choice of active space does not limit the size of molecules that

can be studied.
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Excited states of planar unsaturated molecules
CAS

• All π− orbitals should be active, if possible. Otherwise select by

energy criteria. Also depends on how large fraction of the spectrum

shall be computed.

• Add Rydberg orbitals, when needed (above 5 eV for first row). Don’t

describe Rydberg states with diffuse orbitals on each atom!!

• Defined the charge center of the ion. Place specially selected Ryd-

berg basis functions there.

• A large library of calculations exists. Consult the literature.
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Transition metal compounds
CAS

• This is a more difficult case.

• For Cr-Cu one needs to account for the double shell effect, at least if the d-orbital

occupation changes in the process studied.

• This is less important for second and third row atoms. In general they are easier

than the crowded first row.

• The general rule is that all orbitals that have d-character should be included. For

example: the molecules Cr(CO)6, Fe(CO)5 and Ni(CO)4 needs that active space

10in10.

• High oxidation numbers need more active orbitals because bonds become very co-

valent (large charge transfer): Example MnO−

4 : 24in17 (all 3d and O(2p)./sbin/ifconfig)

• Recommended reading: K. Pierloot, Mol. Phys. 101, 2083 (2003).
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Lanthanides and Actinides
CAS

Lanthanides

The 4f shell is inert but has to be kept active.

5d,6s (6p) the most important orbitals.

Often very ionic complexes. Only 4f active.

Covalent bonds difficult because large demands on the active space.

High spin in the f-shell helps (ex: Gd2, S=7).

Actinides

In principle: 5f,6d,7s active (13 orbitals).

But: actinides are often highly charged: only 5f active.

But: covalent bonding is not unusual. Example uranyl, UO2+
2 , which

needs a 12in12 active space.

Beware: nothing is trivial in actinide chemistry.

35



Multi-state CASPT2
CAS

• Treats several states simultanously at the CASPT2 level.

• Useful when there are states of the same symmetry close in energy.

• Separate Rydberg and valence excited states.

• Compulsory when studying avoided crossings, conical intersections,

etc.

Two excited states of Ethene

CASPT2 MS-PT2 Expt.

The V-state:

dE (eV) 8.45 7.98 8.0

< x2 > 52.0 20.1 -

The 3dπ state:

dE (eV) 8.93 9.40 9.33

< x2 > 50.1 81.7 -
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The RASSCF State Interaction Method, RASSI

(P.-Å. Malmqvist, 1986)
CAS

• Assume a set of RASSCF(CASSCF) wave functions have been com-

puted.

• For each pair of wave functions, transform to a set of bi-orthonormal

orbitals. Transform the corresponding CI wave functions to the new

basis.

• It is now easy to compute transition density matrices (1- and 2-).

Routinely used to compute transition dipole moments.

• Use them to compute the Hamiltonian matrix elements. Solve the

CI problem.

• Can be used to mix many RAS(CAS) states (more than 200 have

been used).
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The RASSCF State Interaction Method with

Spin-Orbit Coupling, RASSI-SO

(P.-Å. Malmqvist et al., 2000)
CAS

• Perform CASSCF/CASPT2 calculations on the electronic states

that are expected to interact via SO coupling.

• Set up the SO Hamiltonian using AMFI integrals and (eventu-

ally) CASPT2 energies. Compute the total interaction matrix with

RASSI-SO.

• Diagonalize to obtain the final energies and wave functions.
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RASSCF input

• Spin, orbitals

• Old style

� Nactel
� Inactive, RAS1, RAS2, RAS3

• New style

� Charge, RASSCF

• LUMORB or Fileorb
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RASSCF input example

&RASSCF
Spin=1
Nactel = 8 0 0
Inactive = 1
RAS2 =8

or
&RASSCF
Spin=1
FileOrb=$CurrDir/$Project.RasOrb

Note! if e.g. both RAS2 and FileOrb/Lumorb
are set: they must match!
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Graphical inspection of orbitals

&RASSCF
...
&GRID_IT
SPAR; ALL
>>UNIX molcas gv
* use F3 for overlook
* mark subspaces
&RASSCF
FileOrb=$Project.GvOrb
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Final conclusions

• PT2 can NOT fix poorly defined active space

• One-electron energies can be very misleading

for virtuals: LUMO+14, LUMO+15, LUMO+43

• Must have tools for Active orbitals selection:
� always look at the orbitals (gv)

� use small basis set (expbas)

� use localization (localisation)
� use RAS probing (small RAS2 + large RAS1/3)
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