Multiconfigurational approach in MOLCAS, cask matured

Valera Veryazov
Valera.Veryazov@teokem.lu.se

Division of Theoretical Chemistry
Lund University
Sweden
Overview

- Multiconfiguration theory in a few slides.
- Is it really difficult to select the active space?
- Molcas software
- Some state-of-the-art calculations
Quantum Chemistry, Introduction

Schrödinger equation: $\hat{H}\Psi = E\Psi$

Independent particles: $\Psi = \phi(r_1) \ast \phi(r_2) \ast ... \ast \phi(r_n)$

Wave-function: $\Psi(r_1, r_2, ..., r_n)$

a cubic box 10x10x10
1 particle = 1000 positions
26 balls = 26 000 positions
26 electrons = 10^{26*3}
The universe would be more simple without correlation!
Hartree-Fock theory

Hartree product \(\phi(r_1) \star \phi(r_2) \star ... \star \phi(r_n) \)
\(\Psi(r_1, r_2) = -\Psi(r_2, r_1) \)
gives us the Hartree-Fock theory with wavefunction in the form of Slater determinant

We solve HF equations for a single configuration.

The idea fails for dissociation of \(H_2 \):
- singlet (short distance)
- triplet (long distance)
Welcome to the Zoo!

- approximate methods
 - Perturbation theory: MP2
 - Density functional theory
 - long list of functionals.....

- exact methods
 - hand made selection of excitations
 - S, SD, SDT, schemes
 - Coupled Cluster theory
 - The correct answer: full CI (take all of them)
Full CI

if Φ_K is antisymmetric N-electron function

Full CI: $\Psi = \sum_K C_K \Phi_K$

Number of orbitals: n
Number of electrons: N
Spin quantum number: S

Weyl’s formula for the number of configuration state functions

$$K_{n,N,S} = \frac{2S+1}{n+1} \left(\begin{array}{c} n+1 \\ N/2 - S \end{array} \right) \left(\begin{array}{c} n+1 \\ N/2 + S + 1 \end{array} \right)$$

$S=0$ (singlet), $n=8$

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>36</td>
<td>336</td>
<td>1176</td>
<td>1764</td>
<td>1176</td>
<td>336</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>226512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2760615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>34763300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>449141836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5924217936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>79483257308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1081724803600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>14901311070000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>207426250094400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2913690606794775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>41255439318353696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>588272005095043456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>8441132926294525952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>121805548126430068736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1766594752418699542528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>25739723541439408242688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiconfigurational approach

CASSCF =
Full CI on a limited set of orbitals
(active orbitals)

RASSCF =
Full CI on a limited set of orbitals plus SD..
for limited set of orbitals

CASPT2 - PT2 theory on top of CASSCF
RASPT2 - PT2 theory on top of RASSCF

Multistate CASPT2
RAS State Interaction
Is it accurate?

Dissociation energies for two-atomic molecules. Note, PT2 hamiltonian strictly speaking allows some parametrization. Here the results for two variants the standard one ‘red’ and with IPEA shift ‘black’
Why do we [still] use DFT?

- CASSCF is not a ‘black box’ method
- The results really depends on the active space!
- It is very easy to go beyond the size limits
- PT2 theory can not improve problems with CAS
- popular myths:
 - the selection of the active space is an ART
 - small active space will do the trick
 - active space can cure itself
 - intruder states in CASPT2
- not easy to implement
Selection of active space

"Sometimes trivial, sometimes more difficult, sometimes impossible" (Björn Roos)

- depends on the problem, and can not be automatized
- for the ground and excited states:
 - π orbitals for aromatic molecules
 - for transition metals and lanthanides/actinides based on periodic table
- for dissociation: must include reactant and product

V.Veryazov, P-Å.Malmqvist, B.O.Roos, IJQC 111 (2011) 3329-3338
Selection, based at periodic table
way too many...

So, we would like to include: π-bonds, d–shell (double?), etc.
"around HOMO-LUMO"

benzene molecule: 6 π– orbitals: 3 occupied and 3 virtual

HOMO-4, HOMO-2, HOMO, LUMO, LUMO+1, LUMO+2
We can easily recognize π orbitals, but they are not located around HOMO-LUMO!

For virtuals: LUMO+14, LUMO+15, LUMO+43
Implementation of CASSCF/CASPT2

- CPU (BLAS) demanding
- extremely high demand for memory and I/O
- difficult to parallelize
- So, in many codes - very limited CAS/CASPT2
 (which makes it useless)
Molcas: early 90’s to present day

• started by Björn Roos in early 90’s
• non-commercial, but licensed software
• open for developers and contributors
• main nodes: Lund and Uppsala
• about 50 developers
• used at more than 200 academic groups
• http://www.molcas.org
Molcas software

Software for Quantum Chemistry

- for ground and excited states,
- for molecular structure, chemical and photochemical reactions,
- for solution chemistry, chemical bonding, and much more,
- for all elements of the periodic table.
- from DFT to Coupled Cluster
- Cholesky decomposition and resolution of identity
- analytical or numerical gradients
- runs on any platform
Most important point: multiconfigurational theory CASSCF/RASSCF and CASPT2/RASPT2

How big and how fast?

- no hard limit in active space, but memory, disk, etc. running out at
 ♦ about 16 on 16 orbitals (no symmetry) for CASSCF
 ♦ about 40 on 40 orbitals for RASSCF
- Number of atoms about 120
- basis set size about 2000
Tools to be used in C[R]AS calculations:

- GV - simple graphical interface for active space selection
- expbas - a tool to transform density, computed with different basis
- localization - orbitals localization
- cmocorr - a tool to compare initial and final active spaces
- RASSCF(SD) probe - a technique to identify potentially active orbitals
Visual inspection of orbitals

- run preliminary calculation
- visualize orbitals, using GV code

- identify the active space
- use orbital file with selected active space, as an input for CASSCF/RASSCF calculation
The basis set must be large in ‘real calculations’. However, it is very difficult to recognize an orbital, computed with extended basis set.

- make a calculation with minimal basis set
- identify orbitals
- use expbas tool to transform them to larger basis set
- (bonus) better starting point
Localization of orbitals

Localization is mostly used to get charges, bond orders. But it can also be used to recognize the orbitals.
RAS probing

The idea:
give a freedom, and see how it was used...

- add orbitals to the active space for RASSCF calculation
- check the occupation numbers
- keep those in between 0 and 2
- make another active space
A success story..

Chloroiron corrole.
A study published in 2008 suggests active space \(0/14/0\).

Initial RASSCF calculation was made for \(6/6/6\) set.
The set can be reduced to \(4/6/4\),
which gives results similar to \(0/14/0\).
Exciplex formation

Pyridine and cyanonaphtalene can form an exciplex with distance 1.45 Å between the molecules.

experiment shows repulsive interaction for the ground state and a weak minimum for excited states

23 orbitals.
Complex pyridine-CN-naphth

Two variants of RAS spaces: pyridine-like (for non interacting molecules) /9/4/8/ and complex (for short distances) /11/3/9/ vs. CAS /0/14/0/.
The similar results with very different cost! in both cases - a minimum in the excited state has been found
Material Science applications

Many applications in material science are related to bond creation/breaking. Precise treatment is often needed.

To describe molecules of a surface we are developing

- new schemes to decrease the number of virtual orbitals
- new schemes for geometry optimization
- basis sets to mimic embedding
- parallelization and general speed up
A study of formation of C-S-H nanoparticles: the basic blocks of concrete (sponsored by BASF). Interaction of surface with water and $Si(OH)_4$.
todo list – work in progress

- better adjustment for modern hardware
- better parallelized
- new geometry optimizer for numerical gradients
- analytical CASPT2 gradients
- better GUI
- cluster embedding
- free student edition

Thanks to Molcas team, especially Per-Åke Malmqvist, Roland Lindh, Per-Olof Widmark, Victor Vysotskiy, Steven Vancoillie