
Part I

Introduction

1

Section 1

Introduction to COLUMBUS

1.1 COLUMBUS, Quantum Chemistry Package

COLUMBUS is a general purpose quantum-chemical program package specialized on generally applicable
one and two-component multi-reference methods, in particular MCSCF, MR-SDCI, and MR-AQCC.
The availability of general analytical gradients and the corresponding non-adiabatic coupling vectors for
one-component MCSCF, SA-MCSCF, MR-CISD and MR-AQCC calculations is an out-standing feature.
Note, that the choice of MCSCF and MRCI reference spaces is completely independent from each other
and not restricted to a particular form such as CAS or RAS type CSF spaces.

COLUMBUS operates in its entiety within the framework of the GUGA approach and, hence, in a basis
of spin-adapted configuration state functions. This leads in particular to certain advantages for two-
component MR-CISD calculations within the perturbational approach. Spin-orbit CI calculations may
be based on spin-orbit pseudo potentials (e.g. those by M. Dolg et.al.) or on the (abinitio) DKH/AMFI
approach.

With the growing number of correlated electrons, the size of the configuration space increases rapidly and
quickly reaches O(N8) CSFs and more, so that an efficient parallel implementation is essential. COLUMBUS
parallelization scheme is utilizing the Global Arrays Toolkit for dynamic load balancing and one-sided
communication and is capable of running MRCI calculations with dimensions up to 3 billion CSFs with
- for today’s standards - modest ressource requirements.

The manual partly comprises detailed material in small print describing technical aspects which can be
skipped on first read.

3

4 SECTION 1. INTRODUCTION TO COLUMBUS

Part II

Short Guide to COLUMBUS

5

1.2. SHORT GUIDE TO COLUMBUS 7

1.2 Short Guide to COLUMBUS

8

Part III

User’s Guide to COLUMBUS

9

Section 2

The Molcas-Columbus link

2.1 Overview

The interfaces exploit the modular nature of both Columbus and Molcas packages and are based upon
the exchange of well-defined quantities (integrals, derivative integrals, density matrices as well as other
simple data such as molecular orbital coefficients, structural data, basis set information, etc.). These data
are directly accessed by high-level Molcas library routines linked into the Columbus modules. Thus,
Columbus inherits the capability to read and write binary Molcas data formats in contrast to other
concepts, that rely on some converter tool and maintain the same data in different representations. For
ASCII files, such as MO coefficient files it is trivial to read/write data in the Molcas native format.

However, it is not possible to exchange ill-defined data such as n-electron wavefunctions, which cannot
necessarily exactly and easily be interconverted between Molcas and Columbus representations.

The Cholesky-Decomposition (CD) scheme is currently not supported1.

The following two subsections serve as a brief overview on the differences concerning execution under
control of Columbus and Molcas, respectively.

2.1.1 Execution of Columbus under control of Molcas

While the input to Molcas modules remains unchanged, in addition there appears input for the (external)
Columbus modules. The script like features of the Molcas input language remain usable.

The Columbus version (7.1) shipped for the operation under control of the Molcas driver is a slightly
modified version of the stand-alone Columbus package containing a subset of various modules, only.
While the stand-alone version has all features of Columbus available, only a subset of the features
coming with Molcas can be accessed there in an automatic or semi-automatic way under control of the
Columbus driver. With the partially stripped version running under control of the Molcas driver it is
rather the opposite - all features of Molcas are necessarily available but not all of the functionality of
Columbus can be used in a sensible manner.

The high-level interface is implemented such, that it automatically generates the necessary Columbus
input files from the simplified input description in the Molcas input file and calls the respective Colum-
bus modules in the appropriate order. In order to have more control over the Columbus modules while

1The most conventional way to partially use the CD scheme is to rerun SEWARD prior to COLUMBUS with CD disabled.

11

12 SECTION 2. THE MOLCAS-COLUMBUS LINK

&SEWARD &END

basis sets

geometry

...

&RASSCF &END

wavef. definition

...

&COLUMBUS &END

mcscf wavef. def.

mrci wavef. def.

...

gradient specs.

...

optimizer specs

...

&SLAPAF &END

optimizer options

...

INPUT FILE

integral evaluation SEWARD

MO optimisation MCSCF RASSCF

AO-MO transformation TRAN

wave function
optimisation

variatonal
SO-MRCISD

MRCISD
MRAQCC

QDPT-type
SO-MRCISD

eff. densities
integral derivatives

CIGRD
ALASKA

structure relaxation GDIIS SLAPAF

PROGRAM FLOW
DATA FLOW

COLUMBUS
MOLCAS RTE &
COLUMBUS plugins

MOLCAS

(µν|κλ) hµν

{Φi}

(pq|rs) hpq

D d

{ ∂E
∂rA

}

updated geometry

Figure 2.1: Schematically depicted data and program flow for mixed operation of Columbus and Molcas
under control of the Molcas-driver. The depicted work flow refers to single-point energy evaluations and
structure optimizations. Molcas-input files in principle also allow for much more complex work flows.

avoiding a rather cumbersome Molcas input file, it is recommended to follow the subsequent workflow,
if Molcas style input is not flexible enough:

1. prepare a closely related Molcas style input and add the TEST keyword in the general Columbus
section2

2. change to the $project/WORK directory and modify the respective input files in line with the
Columbusdocumentation in the COLUMBUS/docs subdirectory

3. replace the keyword TEST by NOAUTO and re-run the job3

This procedure is primarily useful for specialized options to some Columbus modules and for the con-
struction of more specialized CSF spaces.

2.1.2 Execution of Molcas under control of Columbus

From Columbus version 7.0 the Columbus driver facility runc supports single-point energy calculations
as well as the evaluation of analytical gradients at SA-MCSCF and MR-CISD/MR-AQCC levels of theory.
Also support is added to use RASSCF calculations in a variety of ways and to automatically run consistent
CASPT2 calculations such that the results can be compared directly. While some (limited) support is
added to generate all required Columbus and Molcas input files directly with the Columbus input
facility colinp, the use of special Molcas program options requires manual intervention anyway.

2TEST stops execution prior to running the MCSCF or MRCI code after creation of all input files including the DRTs
specifying the wavefunction

3NOAUTO assumes that a valid $project/WORK directory exists containing valid input.

2.1. OVERVIEW 13

create a molcas input file
(named molcas.input)
containing input sections for

• seward (mandatory)

• rasscf (optional)

• caspt2 (optional)

• slapaf (optional)

• alaska (automatic)

create Columbus input:

• use colinp

• modify control.run

(optionally)

execute runc

(Columbus driver)

INPUT FILES

basis sets
geometry

integral evaluation ARGOS SEWARD

{ΨMCSCF } MO optimisation MCSCF RASSCF

{ΨMRCI} wave function
optimisation

CIUDG CASPT2

eff. Fock and density
matrix construction

CIGRD

basis sets
geometry

integral derivatives ALASKA

optimiser setup structure relaxation GDIIS SLAPAF

INPUT DATA
PROGRAM FLOW
DATA FLOW

COLUMBUS MOLCAS

(µν|κλ) hµν

{Φi}

D d

F ′, D′ d′

{ ∂E
∂rA

}

updated geometry

Figure 2.2: Schematically depicted data and program flow for mixed operation of Columbus and Molcas
under control of the Columbus-driver. The depicted work flow refers to single-point energy evaluations
and structure optimizations.

Apart from using the integrals and derivatives of the integrals w.r.t. geometric displacements (i.e. the
Molcas modules SEWARD and ALASKA), it is also convenient to use the RASSCF module for orbital op-
timization or the SLAPAF module for a wide variety of structure optimization schemes. Note, that for
analytical gradients, it is not possible to directly start from MOs generated with the RASSCF module,
instead it must be followed by a single MCSCF (macro) iteration and the same CSF space with the
Columbus MCSCF code in order to properly evaluate the analytic gradients.

Hence, the following examples illustrate the possibilities:

• Run a single-point MR-CISD calculation using the DKH Hamiltonian to describe scalar-relativistic
effects.

• Run a single-point, variational SO-MR-CISD calculation using the DKH Hamiltonian and atomic
mean field integrals to describe spin-orbit coupling.

• Run a single-point, QDPT-type SO-MR-CISD calculation using the DKH Hamiltonian and and
atomic mean field integrals to describe spin-orbit coupling.

• Run a large scale RASSCF calculation followed by MR-CISD/MR-AQCC (with an appropriately
reduced reference space.

• Use RASSCF to pre-optimize MOs for a subsequent Columbus MCSCF calculation

• Use RASSCF followed by CASPT2 and MR-CISD/MR-AQCC to compute energies at different
levels of theory, that can be directly compared.

• Use the Columbus analytic gradient and nonadiabatic coupling feature, to optimize structures of
minima on the conical intersection seam

14 SECTION 2. THE MOLCAS-COLUMBUS LINK

2.2 Configuration space definition

Columbus is operating in a basis of spin-adapted configuration state functions (CSFs) which are encoded
in terms of a distinct row table (DRT).

In order to construct a CSF space constrained to a given number of electrons, spin multiplicity and spatial
symmetry, both Molcas and Columbus rely on the concept of active spaces: orbital subsets are defined
along with occupation number restrictions. The CSF space is defined by all possible CSFs meeting the
occupation number restrictions. This is the familiar CAS or RAS1/RAS2/RAS3 or more general GAS.
The flexibility of configuration space definition goes far beyond that, as even individual CSF (in MCSCF)
or internal CSF (in MRCI) can be selected or excluded from the CSF space.

2.2.1 MCSCF configuration spaces

The MCSCF CSF space is characterized by the number of electrons, spatial symmetry, spin multiplicity
and the definition of frozen core (FC), doubly occupied (DOCC), active and virtual orbitals (VO). Frozen
core orbitals are unaffected by the MCSCF orbital optimization and are always doubly occupied. In
contrast the DOCC or inactive orbital space is optimized. The virtual orbitals are unoccupied throughout
and the space spanned by the VOs changes during optimization. The remaining active orbitals are further
decomposed into restricted active space (RAS), complete active space (CAS) and auxiliary space (AUX).
In Molcas notation this is just RAS1, RAS2 and RAS3. Other specialized CSF spaces such as perfect
pairing or generalized valence bond type could also be defined. However, they are not supported in the
simplified input scheme.

A note of caution is in place, however: the more a CSF space deviates from a CAS, the more implicit
assumptions are made with respect to consistent MOs and consistent MO ordering. If these assumptions
are inconsistent or impossible to satisfy (e.g. wrong size and partitioning into RAS1,RAS2 and RAS3
subspaces), orbital optimization will fail or the final wavefunction is not the expected one.

• FC: Frozen core orbitals are always doubly occupied and, hence, electrons are not correlated.

The remaining orbitals are divided into

• DOCC: These (inactive) orbitals are always doubly occupied in all CSFs.

• RAS: The restricted active space is fully occupied with a maximum number of holes in any CSF.

• CAS: The complete active space may contain any number of electrons in any CSF.

• AUX: The auxiliary orbital space contains a maximum number of electrons in any of the reference
configurations.

• VO: The virtual orbital space is empty throughout the CSF space.

The ordering is bottom-up within each irreducible representation.

We illustrate the configuration space definition and its precise meaning for furan to compute the 1A1

ground and the 13B1 excited state including resulting in 28 and 24 CSFs, respectively. (cc-pVDZ)

2.2. CONFIGURATION SPACE DEFINITION 15

a1 b1 b2 a2 comment
FC 0 0 0 0 no SCF orbitals retained

DOCC 9 6 0 0 σ space
RAS 0 0 0 0
CAS 0 0 3 2 π-CAS
AUX 0 0 0 0
VO 26 25 10 9

total 35 31 13 11

2.2.2 MRCI configuration spaces

The total CSF space of an MR-CISD calculation is obtained by all single and double excitations from a
given set of reference CSFs constrained by the requested symmetry. The COLUMBUS MRCI program allows
for a large degree of flexibility in defining reference configuration spaces. The orbital space is divided
into internal and external orbitals. The internal orbitals are normally occupied in at least one reference
configurations whereas the external orbitals contain at most two electrons in any configuration and do
not contribute to any reference CSF. As for efficiency reasons only the internal orbital space is explicitly
encoded there is only very limited control over the external orbital space.

Certain orbitals may be eliminated completely from the subsequent calculation: The contribution of the
electrons in this orbital subspace are transformed into an effective fock matrix and repulsion term and thus
lead to a considerable reduction of both the CSF space dimension and the number of electron repulsion
integrals. Note of caution: freezing virtual orbitals requires a suitable resolution to avoid significant
errors. The QMC resolved virtual orbitals of an MCSCF calculation are not necessarily a good starting
point, better choices are e.g. natural orbitals of some previous more restricted MRCI calculation may be
more advisable.

• FC: Frozen core orbitals are always doubly occupied and, hence, electrons are not correlated.

• FV: Frozen virtual orbitals are always unoccupied and, hence, do not contribute to electron corre-
lation.

For reference configuration space definition the remaining orbitals are - in analogy to the MCSCF con-
figuration space definition - further subdivided into

• REFDOCC: These (inactive) orbitals are always doubly occupied in all reference configurations.

• REFRAS: The restricted active space is fully occupied with a maximum number of holes in any
of the reference configurations.

• REFCAS: The complete active space may contain any number of electrons for the different refer-
ence configurations.

• REFAUX: The auxiliary orbital space contains a maximum number of electrons in any of the
reference configurations.

The ordering is bottom-up within each irreducible representation.

We illustrate the configuration space definition and its precise meaning for ethylen to compute the ground
and the first excited state including a small amount of σ polarisation.

16 SECTION 2. THE MOLCAS-COLUMBUS LINK

A1g B1g B2g B3g Au B1u B2u B3u comment
FC

DOCC
REFRAS
REFCAS
REFAUX

virtual
FV

total

There is additional flexibility to define reference and final configuration spaces adding various other
occupation number and cumulative spin coupling constraints resulting e.g. in GVB, PP and other direct
product type spaces. However, these are not supported in the simplified input section.

2.2.3 SO-MRCI configuration spaces

The SO-MRCI method is built as an extension of the non-relativistic mechanism based on CSFs. Absatz
aus dem PERTCI paper plus some info from Yabushita

2.2.4 Approximately Size-Extensive MR-techniques

The Columbus-MRCI code also includes several closely related methods that are approximately size-
extensive. The methods can be characterized by the availability of total energies, analytic gradients
and transition densities. Some methods are by construction variational or perturbational and further
distinguished by being state-specific (separate optimization for each state) or state-universal tied to one
particular reference state. While MR-AQCC, LRT-MR-AQCC and MR-ACPF crucially depend on the
quality of the reference wave function, TE-MR-AQCC depends only on the choice of the reference space.
LRT-MR-AQCC is a state-universal variant to the state-specific MR-AQCC providing also transition
densities.

method constraints energy gradients transition densities
MR-AQCC variational, state-specific yes yes no
MR-ACPF variational, state-specific yes yes no
LRT-MR-AQCC variational, reference state yes yes yes
TE-MR-AQCC variational, state-specific yes no no
MRCI+Q perturbational, state-specific yes no no

2.3 Analytical Gradients

Analytical gradients of the total energy with respect to geometrical distortions are available at the SS-
MCSCF, SA-MCSCF, MR-CISD and MR-AQCC level of theory. Although the MCSCF configuration
space may be choosen identical to the corresponding definition in the RASSCF module, it is not possible
to run analytical gradients (neither for MCSCF nor MR-CISD/MR-AQCC) starting from the output of
the RASSCF module. Although the converged RASSCF molecular orbitals may be used as a starting
point, it is always necessary to run at least single Columbus MCSCF calculation in order to generate the
properly resolved orbitals and to compute the orbital hessian along with additional internal data needed
by the effective Fock and density matrix construction step. If the definition of RASSCF and MCSCF
configuration spaces matches, this amounts to just an additional single MCSCF calculation, otherwise

2.4. NON-ADIABATIC COUPLING VECTORS 17

the RASSCF orbitals are just the starting guess for the actual MCSCF calculation on which the gradient
is ultimatively based. Frequently, it is a sensible and efficient strategy to pre-optimize with RASSCF,
followed by a MCSCF calculation.

References to the gradients and papers

2.4 Non-adiabatic coupling vectors

2.5 Structure Optimization

Structure optimization decomposes into three aspects:

• the definition of suitable coordinates for optimization including optimization constraints such as
freezing coordinates

• type of characteristic point on the PES to be searched for

• the update scheme to generate an improved geometry for the next step in the optimization cycle

Table Structure optimizations

The recommended default scheme is to use SLAPAF saddle point and minima searches along with the
availabe features for coordinate definition and update scheme. A couple of input examples are given
below. This procedure is applicable to situations, where SLAPAF processes the gradient of a single
electronic gradient only. In case of searches for the minimum on an intersystem crossing (i.e. absence of
non-adiabatic coupling terms for the pair of states), the input consists of two gradients (one per electronic
state) plus the energies. As of the time of writing SLAPAF is not able to recognize the corresponding
Columbus information. The same applies to search for the minimum of a crossing seam (i.e. including
non-adiabatic coupling terms for the pair of states).

In these situations one has to resort to the internal coordinate definition and structure optimization
modules coming with Columbus.

Columbus internally relies on a Newton-Raphson procedure starting with diagonal Hessian where the
diagonal elements are set according to some heuristic rules. The Hessian is updated from the analytical
gradients in the subsequent optimization steps.

2.6 The Columbus MCSCF program

While the MCSCF code is of completely general nature in the sense, that an arbitrary configuration
space may be selected, this leads to much fewer possibilities to exploit efficient matrix linear algebra,
while the more limited configuration spaces in RASSCF boil down to endless matrix operations. The
differences are particular apparent for large CSF spaces. On the other hand the RASSCF code optimizes
the wavefunction by the super CI method[1], effectively evaluating solely gradient terms with respect to
the wavefunction parameters (CI and MO coefficients). While this allows for efficient implementation and
modest ressource requirements, the convergence rate is frequently disappointingly slow requiring hundreds
of macro iterations. The Columbus MCSCF code explicitly constructs the second order derivatives with
respect to CI and MO coefficients. While this improves convergence, it drastically increases computational

18 SECTION 2. THE MOLCAS-COLUMBUS LINK

cost, disk space and memory usage. Also, the mcscf code is currently limited to at most 1 million CSFs
but it is certainly not advisable to combine large CSF spaces with large basis sets.

The MCSCF codes offers state-averaged MCSCF calculations where the constituting states are not con-
strained to the same symmetry or spin multiplicity. This allows to run SA-MCSCF calculations for high
symmetry systems within the highest possible Abelian pointgroup without breaking the proper symmetry
of the molecular orbitals and correspondingly of the electronic states.

2.7 The COLUMBUS MRCISD program

The Columbus MRCI program may be executed after molecular orbital optimization by means of the
SCF, RASSCF or MCSCF programs. In fact the energy can be evaluated based on any input orbitals with
a matching CSF space definition. This includes both standard non-relativistic or scalar relativistic MRCI
calculations as well as two-component spin-orbit CI calculations[2].

The COLUMBUS MRCI program generates Multi Reference SDCI[2], ACPF[3], AQCC[4] and AQCC-v[5]
wavefunctions. AQCC and ACPF belong to a class of approximately size-extensive functionals applicable
to the multi reference case. The program and is based on the Direct CI method[6]. Coupling coefficients
are generated on the fly with the Graphical Unitary Group Approach[7].

The COLUMBUS MRCI program also generates state-specific natural orbitals that can be fed into the prop-
erty program to evaluate certain one electron properties. The natural orbitals are also useful for Iterated
Natural Orbital (INO) calculations.

The program is particularly well-suited for large configuration spaces. Several eigenvectors can be com-
puted simultaneously for MR-SDCI calculations while approximate size-extensive functionals are state-
selective.

Functionals

The many-electron wavefunction is expanded in terms of spin-adapted configuration state functions
(CSFs) Φi. The full CI space is partitioned into four disjoint subspaces P , Q′, Q and R. P denotes
the reference configuration space, spanned by a subset of all configurations that can be obtained by dis-
tributing the electrons over the internal (active+inactive) orbitals, only. Q′ denotes all single and double
excitations out of Φi ∈ P not contained in P with all external orbitals unoccupied (also termed internal
configurations) while Q contains those single and double excitations not contained in either P nor Q′. R
finally denotes all CSFs not contained in either P, Q and Q′.

The full CI wavefunction reads

ΨFCI = ΨP + ΨQ′ + ΨQ + ΨR =
∑
i∈P

cPi ΦPi +
∑
i∈Q′

cQ
′

i ΦQ
′

i +
∑
i∈Q

cQi ΦQi +
∑
i∈R

cRi ΦRi (2.1)

The uncontracted MR-CISD expansion is truncated to ΨP + ΨQ′ + ΨQ with all cPi , c
Q′

i , cQi optimized
independently. As the truncated MR-CISD expansion is not size-extensive, a rapidly increasing dif-
ferential electron correlation error is introduced beyond about 10 correlated electrons. Approximately
size-extensivity corrected methods restore size-extensivity by incorporating the effect of higher excitations
from the R space in an approximate way. MR-AQCC includes the effect of disconnected quadruple exci-
tations and may be considered as an approximation to MR-CCSD. As a variational method with respect
to the wavefunction expansion coefficients analytical gradients can be implemented efficiently exploiting
the Hellmann-Feynman theorem[?]. Very accurate data for excitation energies, equilibrium bond lengths

2.7. THE COLUMBUS MRCISD PROGRAM 19

and harmonic frequencies have been obtained at the CBS limit in a benchmark study[8, 9]. Thus, it is
the method of choice for many-electron targets.

Here, we focus on a family of functionals of the state-specific correlation energy ∆Eα defined as the
difference between the energy of the reference wavefunction Eα0 and the total Energy E.

Fα(cα) =
〈∑i c

α
i Φi|Ĥ − Eα0 |

∑
i c
α
i Φi〉∑

i∈P,Q′ (cαi)2 +G
∑
i∈Q (cαi)2

(2.2)

The available energy functionals differ in the normalization of the denominator and the associated G-
values are given as

method g
MR-CISD 1
MR-ACPF 2

N

MR-AQCC 1− (N−3)(N−2)
N(N−1)

MR-AQCC-v 1− (N−3)(N−2)(V−3)(V−2)
N(N−1)V (V−1)

N denotes the number of correlated electrons N and V the number of virtual (unoccupied) MOs.

Note, that wavefunctions for ground and excited states of the same symmetry based on the size-extensivity
corrected functionals are not orthogonal since the reference energy defines different Hamiltonians.

Diagonal Shift Technique

The above energy functionals can be cast into an MR-CISD eigenvalue problem with diagonal CI matrix
element shifted by ∆0[5],

〈Φi|(H− Eα0 +
∑
k/∈int

(1−G)∆E0 |Φk〉〈Φk|︸ ︷︷ ︸
∆0

∑
j

cαj Φj〉 = ∆Eαcαi (2.3)

The projection operator
∑
k/∈int |Φk〉〈Φk| ensures that solely matrix elements of non-internal CSFs (CSFs

with electrons in external orbitals or with excitations out of the internal orbitals doubly occupied in all
reference CSFs) are modified. The method-specific constant G is given in the table above with N being
the number of correlated electrons. In case of MRAQCC, ∆E0 = ∆Eα0 is the correlation energy computed
with the MRAQCC functional w.r.t. the energy of the reference wavefunction. Since ∆Eα0 occurs on both
sides of the equation, it is computed iteratively by reinserting the current estimate until convergence.
Owing to the similarity of the MR-CISD and their approximately size-extensivity corrected counterparts
and the diagonal shift technique, the wavefunction optimization can be carried out by the standard
Davidson subspace scheme using modified subspace representations of the CI and Overlap matrices[5].
Hence, the overhead compared to MR-CISD is negligible.

LRT-AQCC

LRT-MRAQCC[10], a perturbative extension to the state-selective MRAQCC method[4], offers a natural
way to consistently derive approximately size-extensive ground and excited state energies as well as

20 SECTION 2. THE MOLCAS-COLUMBUS LINK

transition densities. Hence, diagonal and off-diagonal matrix elements of the model space Hamiltonian
can be described consistently.

In case of LRT-MRAQCC, ∆E0 is the MRAQCC correlation energy of the reference state, i.e., LRT-
MRAQCC is no longer a state-specific functional and the electronic states are mutually orthogonal as
they share the same Hamiltonian.

TE-AQCC

While the above functionals depend explicitly through Eα0 on the reference wavefunction, total energy
AQCC replaces the functional of the correlation energy by a functional of the total energy and nd Eα0 is
substituted by the relaxed reference energy Ẽα0 defined as

Ẽα0 =
〈∑i∈P c

α
i Φαi |Ĥ|

∑
i∈P c

α
i Φαi 〉∑

i∈P (cαi)2
≥ Eα0 (2.4)

It follows that ∆̂ is amended by an off-diagonal term ̂̃∆ over the reference space, only.

̂̃∆ =
∑
l∈P

∑
k∈P

(
|Φl〉〈Φl|

(G− 1)
∑
i∈Q (cαi)2∑

i∈P (cαi)2
(Ĥ − Ẽα0)|Φk〉〈Φk|

)
(2.5)

TE-AQCC is sensitive to the choice of the reference space, only, in spirit similar to the multi-reference
analogs of the SDCI type Davidson correction[?],

ECI+Q1 = EαCI + (EαCI − Ẽα0)(1− c20) (2.6)

ECI+Q2 = EαCI + (EαCI − Ẽα0)
1− c20
c20

(2.7)

ECI+Q3 = EαCI + (EαCI − Ẽα0)
1− c20
2c20 − 1

(2.8)

where c20 =
∑
i∈P c

α
i Φαi denotes the relaxed weight of the reference space in the final normalized MR-CISD

wavefunction.

2.7. THE COLUMBUS MRCISD PROGRAM 21

2.7.1 Performance Issues

Fig. 2: Figure 2: Parallel performance of the COLUMBUS MR-CISD code (JUROPATEST, each node is supplied

with 2 Intel Xeon CPU E5-2695 v3 CPUs with 14-cores per CPU, 2.3 GHz, 128 GB DDR4 memory, Infiniband FDR

HCA network). Wall clock time (seconds) per Davidson iteration for (i) Ozone ground state, MR-CISD,cc-pV5Z,

ref. CAS(12e,9o), C2v , 4.11 108 CSFs (boxes); (ii) Ozone ground state, MR-CISD,cc-pV5Z, ref. CAS(18e,12o),

C2v , 15108 CSFs (circles); (iii) Cu- Benzene, variational SO-MRCISD, cc-pVDZ, ref CAS(11e,6o)CAS(4e,4o),

C2v, 1 109 CSFs (bullets). Ideal scaling (blue line).

The strong scaling performance plot in the above figure demonstrates that almost ideal scaling can
be achieved. Since the performance data have been carried out on a test system for the upcoming
successor of the existing general purpose system JUROPA, certain machine characteristics affecting the
overall performance (eg. memory and process pinning) are not perfectly adjusted giving rise to slight
irregularities in the performance data. On the existing general purpose system JUROPA, the scaling
is almost ideal up to approximately 1000 cores. Please note, that up to version 7.0 the performance
characteristics for a large number of cores is mostly determined by the ability of the network to cope with
random point-to-point traffic. This dependency is reduced at version 7.1.

Performance tuning used to be a tricky procedure and has now become somewhat automated. The key
questions answered in the following paragraphs are

• why is performance tuning strongly case and machine dependent

• what is the underlying performance model

• how are case and machine dependencies handled

Parallel direct CI: segmented matrix-vector products

From Revision 1.1.0 onwards the parallelization strategy has fundamentally changed and
the subsequent discussion and description does not yet reflect these changes.

22 SECTION 2. THE MOLCAS-COLUMBUS LINK

The direct CI approach[?] using the Davidson diagonalization [?, ?] replaces the explicit construction
of the CI matrix H by an iteratively improved subspace representation of the problem. It relies on an
efficient formation of matrix vector products σ = Hv which uses up about 99% of the computer time. The
GUGA scheme naturally divides the configuration space into Z, Y, X and W type CSFs corresponding to
CSFs with zero, one, two triplet and singlet coupled electrons in the external orbital space, respectively.
In second quantized form, the Hamiltonian can be written in terms of one and two electron MO integrals
and the generators of the Unitary Group

Ĥ =
∑
ij

hijÊij +
1

2

∑
ijkl

(ij|kl)(ÊijÊkl − δjkÊil) (2.9)

Evaluating the matrix element 〈Φm|Ĥ|Φn〉 of the CI matrix H thus reduces to the computation of the

respective coupling coefficient 〈Φm|Êij |Φn〉, 〈Φm|ÊijiÊkl − δjkÊil|Φn〉 and their contraction with the
MO integrals. Hence, the σ vector formation can be decomposed into non-vanashing contributions. Each
contribution can be classified by a task type T Is,s′ characterized by a class of integrals I (classified according
to the number of external orbital indices (0,1,2,3,4)) and a pair of segment types s,s′ (s, s′ ∈ Z, Y,X,W)
as indicated in Figure 3. The individual task T Is̃,s̃′ carries the specific segment indices s̃, s̃′. Four-external
integrals have non-vanashing contributions to CSFs sharing the same internal path and, hence, can occur
only within a single segment s̃ = s̃′. With multiple segments per segment type an almost arbitrary number
of independent tasks can be generated and evaluated in any order. Each task requires random access to
the segments σs̃ and vs̃′ along with a single pass through all integrals of class I. At the same time the local
memory demands for each task are reduced to the size of the segment pair (σi, vi) plus some buffer space
for integrals. Up to version 7.0 3- and 4-external integrals are stored in distributed memory while 0-,1-,2-
external integrals are available as local copy in the memory of each process. From version 7.1 all integrals
are stored in shared memory as one copy per node, so that there is no integral-related internode data
communication. In addition, the entire subspace expansion with a preset maximum dimension nvmax vi
and σi vectors is stored in distributed memory, giving rise to 2nvmaxnCSF /ncore double precision words
storage requirements per core (or per process).

Partitioning the Ns CSFs of type s into ns segments divides the total work of T Iss′ into nsns′ tasks each
reading and writing one segment as well as running a single pass through all integrals of class I. The total
inter-node data transfer volume V Iss′ (in Bytes) depends at most quadratically on the number of segments
for the integral contribution and linearly for the σ and trial vector component taking into account that
0-,1- and 2-external integrals are kept as local copies (version ≤7.0):

V Iss′ = 8(n′sNs + nsN
′
s)I ≤ 2 (2.10)

V Iss′ = 8(n′sNs + nsN
′
s) + nsn

′
s(nint)(next)

3 I = 3 (2.11)

V 4
s = 16Ns + ns(next)

4 I = 4 (2.12)

In case of version 7.1 the second term in each line does not contribute to the internode data transfer,
since one copy per node is stored.

To feed ncore cores, ideally it is sufficient to generate O(ncore) tasks (i.e. ns = n′s = O(
√
ncores)) so

that the total communication volume scales O(nαcores) with 1
2 ≤ α ≤ 1 and the average communication

volume per CPU drops with increasing processor usage. To be more precise, while up to version ≤7.0
Vss′ depends quadratically (through the 3-external integrals) on the number of segments ns, version 7.1
depends at most linearly on ns.

2.7. THE COLUMBUS MRCISD PROGRAM 23

Z
Y

X

W

= ×

Z
Y

X

W

σ H v

•
•

•

•

?

?

?

×
×

×

×

× ×◦

◦

◦

◦ ◦

◦ ◦

◦ ◦

�

�

� �

Figure 3: Schematic picture of the segmented matrix vector multiply: lines denote segment type boundaries (Z: all-
internal, Y: one-external, X: triplet coupled two-external, W: singlet-coupled two-external CSFs), while symbols
represent non-vanishing task types and integral classes: T 0

zz, T
0
yy, T

0
xx, T

0
ww{(ij|kl), hij}•; T 4

y , T
4
x , T

4
w{(ab|cd), hab}?;

T 1
yz, T

1
yw, T

1
yx{(ij|ka)}×; T 2

yy, T
2
xz, T

2
wz, T

2
ww, T

2
xx, T

2
wx{(ij|ab), (ia|jb)}◦; T 3

yw, T
3
yx{(ia|bc), hia}�; i, j, k, l and

a, b, c, d denote internal and external orbital indices, respectively.

So far, we have anticipated a rather uniform distribution of the computational cost per CI matrix element
Hi,j . Owing to the structure and sparsity of the CI matrix this is not the case. The total execution time
tIs̃s̃′ for a task T Is̃s̃′ decomposes into

tIs̃s̃′ = tc + tσ + td ≈ αnc + βnu + V/γ (I=0,1,2,3) (2.13)

t4s̃ = tσ + td ≈ β′nCSF + V/γ (I=4) (2.14)

(i) the data transfer time td is given by V Is̃s̃′ divided by some effective network bandwidth γ, (ii) the
evaluation time td of the internal contribution to the coupling coefficient is on average proportional to
their number of non-vanashing number of GUGA loops nc and (iii) the formation the matrix vector
product tσ. The formation of the σ vector makes extensive use of linear algebra and tσ is on average
proportional to the number of valid upper walks nu while the prefactor β depends on task type, point
group symmetry, next and processor characteristics (e.g. cache, clock frequency). tσ can vary by many
orders of magnitude even among tasks of the same type! Both nu and nc depend solely on reference space
definition, the number and ordering of internal orbitals and the number of correlated electrons. Both
quantities are entirely independent of the basis set size. The T 4

s tasks are special insofar the computational
cost is uniformly spread among all tasks and proportional to the length of the CI segment.

Load balancing

Figure 4 (referred to as cost matrix) displays nu for selected task types at a resolution of 150 x 150
segments. Since the cost matrix is independent of the basis set size, each segment is characterized by
the range of internal walks included. The number of encoded CSFs for each segment is approximately
given by scaling the number of internal walks by a factor of 1 (Z), next/nirrep (Y) and n2

ext/nirrep (X,W).
Figure 4 shows that the cost matrix differs by up to 6 orders of magnitude per segment block in a non-
continuous pattern and the percentage of non-vanashing blocks varies from 65% to 7% for the different
task types. It is quite obvious, that the nonuniform distribution of load generally prevents load-balancing
based on some fixed number of equal-sized segments and we need - especially for large core numbers - to

24 SECTION 2. THE MOLCAS-COLUMBUS LINK

T0
ZZ T1

YX

T2
WW T3

YX

0 101 102 103 104 105 106

Figure 2.3: Cost matrix for a CAS(12,12) with all inactive electrons frozen (D2h). The logarithmic gray
scale of the patches encodes the relative work load required to compute the respective subblock of the CI
matrix. The resolution is 150×150 blocks per task type T Iss′ corresponding to 192 Z, 2266 Y 1883 X and
1132 W type encoded internal walks per block. For the EXTD basis with ≈ 35 orbitals per irrep, each
block encodes 192 Z, 79× 103 Y, 288× 103 X or 173× 103 W configurations.

2.8. INPUT DESCRIPTION AND EXAMPLES 25

specify in addition to the number of segments also the segment boundaries. For a small number of cores
(say 32-64)- especially on a single SMP node-, however, it is fortunately sufficient to use a straightaway
reasonable initial guess for the necessary number of equal-sized segments which works in combination
with dynamic load balancing. Specifying both number of segments as well as boundaries for calculation
employing a larger number of cores is usually untractable to do manually.

Thus, an iterative scheme has been devised to generate a list of non-vanashing tasks from the cost matrix
and scaling factors constrained to minimum inter node data transfer volume, optimum load balancing,
maximum memory usage and number of cores. It is essentially an optimization problem relying on a
heuristic procedure to avoid an exponential scaling. Such a scheme relies on reasonably reproducible
task timings, an assumption that does not hold in the case of network saturation or the inability of
the network to cope with a large amount of random data traffic inevitably arising with dynamic load
balancing. Also competition of multiple data-intense processes on a single node for memory and cache
can produce undesirable fluctuations of the individual task timings. While the basis set independent cost
matrix can be directly computed from the DRT the scaling factors α, β are both basis set and machine
dependent. Hence, it is necessary to carry out a boot-straping technique: first set-up the calculation for
a small number of cores, run a few CI-iterations, derive the scaling factors from the performance data,
redo the setup for a range of cores and pick the most appropriate setup for the given situation.

2.8 Input Description and Examples

2.8.1 Dependencies

The program needs the full set of one- and two-electron integrals generated by the program SEWARD.
Currently, Cholesky decomposition schemes are not supported. It is usually recommended to generate
initial orbitals by RHF (SCF) in closed shell cases or by MCSCF calculations (RASSCF).

2.8.2 Files

Input files

File Contents

ORDINT Two-electron integrals from SEWARD.

ONEINT One-electron property integrals from SEWARD.

ONEREL Relativistic one-electron integrals from SEWARD.

AMFI Relativistic one-electron atomic mean field integrals from SEWARD.

LUMORB Molecular orbital coefficients in ASCII format as generated e.g. by SCF or
RASSCF.

26 SECTION 2. THE MOLCAS-COLUMBUS LINK

Output files

File Contents

nocoef ci.drtn.m The natural orbitals for CI root m of DRT n where n and m are integers.

civout.drtn The CI vector information file for the calculation of the n th DRT.

civfl.drtn The CI vector file containing all roots for the calculation of the n th DRT.

ciudgls.drtn The output of the CI calculation for DRT n.

ciudgsm.drtn The short summary of the results for DRT n.

molcasinfo Symmetry and basis set information extracted from MOLCAS files.

Note that these file names are the FORTRAN file names used by the program, so they have to be mapped
to the actual file names. This is usually done automatically in the Molcas system. This does not apply
to the output files.

Local files

File Contents

cidrtin,cidrtmsin These automatically generated input files contain the configuration space def-
inition for the CIDRT.X and CIDRTMS.X which write the DRT files cidrtfl.drtn.

cisrtin The automatically generated input file for the integral sorting step.

ciudgin The automatically generated input file for the COLUMBUS MRCI program.

These input files can be edited manually for special options (refer to the original COLUMBUS documen-
tation). To avoid overwriting the modified input files use the NOAUTO key word.

2.8.3 Input

This section describes the input to the COLUMBUS MRCI interface in the Molcas program system, with
the namelist input:

&COLUMBUS &END

2.8. INPUT DESCRIPTION AND EXAMPLES 27

Keywords

Keywords must be provided with their full name.

The following is a list of compulsory keywords:

Keyword Meaning

END of input This marks the end of the input data.

There are three different sections in the COLUMBUS input, which are bracketed by the section head-
ers(BS *) and trailers (ES *), respectively.

Keyword Meaning

BS GEN This marks the begin of the keywords for the general section, such as memory
consumption, number of CPUs etc.

ES GEN This marks the end of the keywords for the general section.

BS MRCI This marks the begin of the keywords for the CI wavefunction specification and
options to the MRCI code.

ES MRCI This marks the end of the keywords for the MRCI part

BS MCSCF This marks the begin of the keywords for the MCSCF wavefunction specifica-
tion and options to the MCSCF code.

ES MCSCF This marks the end of the keywords for the MCSCF part

BS GRAD This marks the begin of the keywords for the analytical MRCI or MCSCF
gradient.

ES GRAD This marks the end of the keywords for gradient specifications

The wavefunction specifications for both MCSCF and MRCI are internally implemented in terms of
Distinct Row Tables (DRTs).

In case of state-averaged MCSCF calculations, there may be multiple DRTs differing in spatial symmetry
and spin multiplicity and - in principle- even different CSF spaces. In this interface implementation, mul-
tiple DRTs are constrained to the same orbital subspace definitions and occupation number restrictions.

In case of MRCI it is frequently of interest to evaluate multiple MRCI wavefunctions differing in terms of
spin multiplicity or spatial symmetry, in order to compute a reasonably complete overview over excited
states or to find a point of intersystem crossing. In this interface implementation, multiple DRTs are - just
as for MCSCF - constrained to the same orbital subspace definitions and occupation number restrictions.

Hence, within the sections marked by BS MCSCF, ES MCSCF, BS MRCI, ES MRCI there is at least a single
DRT specification marked by DRT and END DRT. DRT specificatons may carry a DRT specific label for
further references.

The allowed DRT specification keywords are

28 SECTION 2. THE MOLCAS-COLUMBUS LINK

Keyword Meaning

DRT marks the begin of a DRT specification

SPIN This indicates the spin multiplicity of the CI or MCSCF wavefunction. In case
of SO-MRCI wavefunctions, this value indicates the maximum spin multiplicity
to be included (cf. to Annex).

SYMM This indicates the spatial symmetry of the non-spin-orbit CI or MCSCF wave-
function; in case of spin-orbit CI wavefunctions, this includes the spin symme-
try. Please refer for the specific details to the section on spin-orbit CI calcula-
tions.

REFSYMM The following line lists all allowed reference wavefunction irreps. Note, that
the final configuration space is built from all EXLVL excitations of correct
symmetry from all reference wavefunctions, even though the latter are not
necessarily of correct symmetry. MRCI section, only.

NROOT For MCSCF and MRCISD calculations the following line specifies the number
of lowest electronic states of this spin multiplicity and symmetry to be com-
puted. For state-specific MRAQCC, MRACPF and MRAQCC-V calculations
the next line is interpreted as the electronic state to be optimized, where the
maximum overlap of the wavefunction with the reference function #NROOT
is the selection criterion. For several states with MRAQCC, MRACPF and
MRAQCC-V just specify multiple DRT sections with the respective NROOT
entries of interest (cf. test33p.input)

ELECTRONS There are three numbers to be read in. The first one specifies the total number
of electrons including doubly occupied orbitals (MCSCF) and frozen core or-
bitals (MRCI). The next two numbers refer to occupation restrictions of orbital
subspaces used for the definition of the MCSCF space (CAS, RAS, AUX) or
equivalently for the MRCI reference space (REFCAS, REFRAS, REFAUX).
Hence, the second one the number of electrons in the complete active subspace
(CAS, REFCAS, in MOLCAS notation RAS2) and the third one the maximum
number of holes in the restricted active subspace (RAS, REFRAS, in MOLCAS
notation RAS1) and the maximum number of electrons in the auxiliary active
subspace (AUX, REFAUX, in MOLCAS notation RAS3).

LABEL Specifies an arbitrary, though unique ASCII label for the current DRT specifi-
cations.

END DRT marks the end of a DRT specification

The following is a list of keywords for the general section.

Keyword Meaning

BS GEN marks the begin of the general section applying to all COLUMBUS modules.

TITLE The following line is treated as title line.

NCPU indicates the number of available CPUs (or equivalently cores)

MEMORY available physical memory per core in MB; recall that the operating system
also fancies some memory.

2.8. INPUT DESCRIPTION AND EXAMPLES 29

PRINT indicates the print level

TEST Test the input. The input is processed, the DRT(s) and input files are generated
and some tests are carried out with no further action.

NOAUTO Take over the input files within the existing $project/WORK input files and
start the calculation. This adjust and manipulate the COLUMBUS input files,
such as additional input options, permutation of MOs etc.

ES GEN marks the end of the general section.

The following is a list of keywords for the MCSCF section.

Keyword Meaning

BS MCSCF marks the begin of the MCSCF section.

TITLE The following line is treated as a title for the MCSCF section.

DOCC The line following this keyword specifies the number of doubly occupied orbitals
per irreducible representation. Default is empty DOCC.

RAS The line following this keyword specifies the number of restricted active orbitals
per irreducible representation. Default is empty RAS.

CAS The line following this keyword specifies the number of complete active orbitals
per irreducible representation. Default is empty CAS.

AUX The line following this keyword specifies the number of auxiliary orbitals per
irreducible representation. Default is empty AUX.

NITER The line following this keyword specifies three numbers indicating the maximum
number of MCSCF (macro) iterations, the maximum number of CI iterations
and the maximum number of PSCI iterations.

CONV The line following this keyword specifies the convergence criteria in terms of
estimated energy error, orbital rotation norm and CSF rotation norm.

DIAG The following line specifies the algorithm to solve the CI eigenvalue problem.
hmat full constructs the full CI Hamiltonian and uses a standard eigensolver
to solve for the lowest roots. hmat iter constructs the full CI Hamiltonian and
solves iteratively for the lowest eigenvectors. nohmat iter uses an iterative,
direct CI method to find the lowest eigenvectors.

ES MCSCF marks the end of the MCSCF section.

The following is a list of keywords for the MCRCI section.

Keyword Meaning

BS MRCI marks the begin of the MRCI section

MRCISD This keyword is used to perform an ordinary Multi-Reference Singles and Dou-
bles CI, MR-SDCI, calculation.

30 SECTION 2. THE MOLCAS-COLUMBUS LINK

MRACPF This keyword tells the program to use the Average Coupled Pair Functional,
MRACPF.

MRAQCC This keyword tells the program to use the Average Quadratic Coupled Cluster
Functional, MRAQCC.

MRAQCC-V This keyword tells the program to use the Average Quadratic Coupled Clus-
ter Functional, MRAQCC-v. Note, that the keywords MRCISD, MRACPF,
MRAQCC, MRAQCC-V are mutually exclusive. Default is MRCISD.

LRT-MRAQCC This keyword selects Linear-Response-Theory based MRAQCC. It is assumed
that the first DRT entry specifies the reference state (usually the ground state)
and subsequent DRTs specify the excited states to be computed.

EXLVL This keyword defines the maximum excitation level used to create the final
configuration space from the reference configuration space. The allowed values
0,1 and 2 are entered on the following line. Default is 2 (single and double
excitations).

SSDIM The two numbers following this line define the maximum and minimum sub-
space dimension, respectively. The default for the minimum value is the num-
ber of roots, the default for the maximum value is the number of roots plus
4. Note, that for serial execution this keyword determines the amount of disk
I/O, whereas for parallel execution it determines the memory consumption.

CONV This keyword defines the requested accuracy in terms of the maximum norm
of the residuum vector,i.e. |r| = |HC − EC|. This corresponds approximately
to a convergence to ∆E ≈ |r|2. Default is 0.0001.

NITER This keyword defines the maximum number of Davidson subspace iterations to
be carried out. Default is 10.

REFSPD This keyword indicates the kind of reference space diagonalization to be used.
Valid values are NONE, FULL and ITER. NONE indicates that no refer-
ence space diagonalization is carried out. Start vectors are the NROOT unit
vectors with the lowest diagonal CI matrix elements. This option is available
with MRCISD, only. FULL indicates full reference space diagonalization by
a standard eigensolver. Start vectors are the NROOT eigenvectors with the
lowest energy. ITER indicates that iterative reference space diagonalization is
carried out using the Davidson subspace method for the lowest NROOT roots,
which form the start vector set. Default is FULL. Usually reference space diag-
onalization is beneficial for convergence and pre-requisite for any non-MRCISD
calculation. For large reference spaces (N¿500) the cubic scaling of the (serial)
eigensolver may result in prohibitively long startup times. Here the (parallel)
iterative scheme is much faster and thus to be preferred. However, the iterative
diagonalization may not necessarily provide all low-energy roots for calculations
on molecules using a point group of lower order than they actually belong to
(e.g. diatomics treated in an abelian point group).

FROZEN The first line following this keyword specifies the number of frozen core orbitals
per irreducible representation in addition to those frozen at the MCSCF level.
The second line following this keyword specifies the number frozen virtual or-
bitals per irreducible representations counting from the highest unoccupied MO
downwards.

2.8. INPUT DESCRIPTION AND EXAMPLES 31

REFDOCC The line following this keyword specifies the number of reference doubly occu-
pied orbitals per irreducible representation. Default is empty REFDOCC.

REFRAS The line following this keyword specifies the number of reference restricted
active orbitals per irreducible representation. Default is empty REFRAS.

REFCAS The line following this keyword specifies the number of reference complete
active orbitals per irreducible representation. Default is empty REFCAS.

REFAUX The line following this keyword specifies the number of reference auxiliary or-
bitals per irreducible representation. Default is empty REFAUX.

GENSPACE This keywords indicates to apply generalized interacting space restrictions.
Only those configurations are included into the final configuration space which
have a non-vanishing matrix element with at least one of the reference config-
urations. Default is no generalized interacting space restrictions.

FINALW If this keyword appears the final W vector as also written to disk. This essen-
tially saves one Davidson iteration on restart.

PARALLEL Execute MRCI code in parallel with NCPU processes (overrides any MOLCAS
settings)

TITLE Title for the MRCI step

ES MRCI marks the end of the MRCI section

The following is a list of keywords for the GRAD section.

Keyword Meaning

BS GRAD marks the begin of the gradient section

ROOT The next line indicates the root to enter the structure optimization.

Title Title of the Gradient part

ES GRAD marks the end of the gradient section

32 SECTION 2. THE MOLCAS-COLUMBUS LINK

2.8.4 Commented Input Examples

Example 1 (seriel)

*$Revision: 1.2 $
*−−−
* Molecule: CH2
* Basis: cc−pvtz
* Symmetry: C2v
* Program Flow: Seward−Scf−Rasscf−columbus(mrci) Single Point
*−−−
 &SEWARD &END
symmetry
x y
basis set
C.cc−pVTZ.Dunning.10s5p2d1f.4s3p2d1f.
C 0.000000 0.000000 −0.190085345
end of basis
basis set
H.cc−pVTZ.Dunning.5s2p1d.3s2p1d.
H 0.00000000 1.645045225 1.132564974
end of basis
end of input
*−−−
 &SCF &END
occupied
3 0 1 0
end of input
*−−−
 &RASSCF &END
inactive
1 0 0 0
ras2
3 1 2 0
nactel
6 0 0
lumorb
Thrs
1.0E−9 1.0E−6 1.0E−6
Iter
70,25
OUTORBITALS
 CANONICAL
end of input
 &COLUMBUS &END
BS_GEN
TITLE
 METHYLEN TEST CASE
ES_GEN
BS_MRCI
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 8
END_DRT
SSDIM

2.8. INPUT DESCRIPTION AND EXAMPLES 33

 5
NITER
 40 1
CONV
 0.001
REFSPD
 FULL
MRCISD
GENSPACE
EXLVL
 2
REFDOCC
 1 0 0 0
REFRAS
 0 0 0 0
REFCAS
 3 1 2
ES_MRCI
end of input

34 SECTION 2. THE MOLCAS-COLUMBUS LINK

Example 2 (seriel)

*$Revision: 1.2 $
*−−−
* Molecule: CH2
* Basis: cc−pvtz
* Symmetry: C2v
* Program Flow: Seward−Scf−Rasscf−columbus(mraqcc) Single Point
*−−−
 &SEWARD &END
symmetry
x y
basis set
C.cc−pVTZ.Dunning.10s5p2d1f.4s3p2d1f.
C 0.000000 0.000000 −0.190085345
end of basis
basis set
H.cc−pVTZ.Dunning.5s2p1d.3s2p1d.
H 0.00000000 1.645045225 1.132564974
end of basis
end of input
*−−−
 &SCF &END
occupied
3 0 1 0
end of input
*−−−
 &RASSCF &END
inactive
1 0 0 0
ras2
3 1 2 0
nactel
6 0 0
lumorb
Thrs
1.0E−9 1.0E−6 1.0E−6
Iter
70,25
OUTORBITALS
 CANONICAL
end of input
 &COLUMBUS &END
BS_GEN
TITLE
 METHYLEN TEST CASE
PRINT
 1
ES_GEN
BS_MRCI
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 8
END_DRT
SSDIM

2.8. INPUT DESCRIPTION AND EXAMPLES 35

 5
NITER
 40 1
CONV
 0.001
REFSPD
 FULL
MRAQCC
GENSPACE
EXLVL
 2
REFDOCC
 1 0 0 0
REFRAS
 0 0 0 0
REFCAS
 3 1 2
ES_MRCI
end of input

36 SECTION 2. THE MOLCAS-COLUMBUS LINK

Example 3 (seriel)

*−−−
* Molecule: Ethylen
* Basis: cc−pvdz
* Symmetry: D2h
* Program Flow: Seward−Scf−columbus(SA−MCSCF − MRCISD) Single Point
* CAS(4e,6o), state−averaging over 11̂B1u(pi−pi*) + 21̂B1u(pi−pi*),1 1̂Ag (pi2̂)
* CI frozen 1s, REFCAS(4e,6o), 1−2 1̂B1u(pi−pi*) + 1 1̂Ag (pi2̂)
* no genspace
*−−−
 &SEWARD &END
symmetry
x y z
basis set
C.cc−pVDZ.Dunning.9s4p1d.3s2p1d.
C1 0.00000000 0.00000000 1.26396910
end of basis
basis set
H.cc−pVDZ.Dunning.4s1p.2s1p.
H1 0.00000000 1.75374650 2.32607580
end of basis
end of input
*−−−
 &SCF &END
end of input
*−−−
* Note, we start the Columbus MCSCF again from
* the SCF orbitals (just for comparison)
* Note, subsequent CI calculation depends on the
* MO resolution, which is not identical in Molcas and Columbus
* (cf. test 11)
>>>COPY $Project.ScfOrb mocoef_mc.lumorb
 &COLUMBUS &END
BS_GEN
TITLE
 Ethylen
ES_GEN
BS_MCSCF
DRT
SPIN
 1
SYMM
 5
NROOT
 2
ELECTRONS
 16 0 0
END_DRT
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 16 0 0
END_DRT
DOCC
 3 0 1 0 2 0 0 0

2.8. INPUT DESCRIPTION AND EXAMPLES 37

CAS
 0 2 1 0 0 2 1 0
NITER
 30 100 100
ES_MCSCF
BS_MRCI
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 16
END_DRT
DRT
SPIN
 1
SYMM
 5
NROOT
 2
ELECTRONS
 16
END_DRT
SSDIM
 5
NITER
 40 1
CONV
 0.001
REFSPD
 FULL
MRCISD
GENSPACE
EXLVL
 2
FROZEN
 1 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0
REFDOCC
 2 0 1 0 1 0 0 0
REFCAS
 0 2 1 0 0 2 1 0
ES_MRCI
end of input

38 SECTION 2. THE MOLCAS-COLUMBUS LINK

Example 4 (parallel)

*−−−
* Molecule: FURAN
* Basis: cc−pvdz
* Symmetry: C2v
* Program Flow: Seward−Scf−Rasscf−columbus(mcscf−mrci−cigrd−alaska)−slapaf
* structure optimization (ground state)
*−−−
>>> Do while <<<<
 &SEWARD &END
symmetry
x y
basis set
C.cc−pVDZ.Dunning.9s4p1d.3s2p1d.
C1 2.07569713438866 0.00000000000000 −1.09096195658541
C2 1.36025367031838 0.00000000000000 1.40829741933368
end of basis
basis set
O.cc−pVDZ.Dunning.9s4p1d.3s2p1d.
O1 0.00000000000000 0.00000000000000 −2.62222340632217
end of basis
basis set
H.cc−pVDZ.Dunning.4s1p.2s1p.
H1 2.61859940891225 0.00000000000000 3.05678038225054
H2 3.90513434048509 0.00000000000000 −2.06300002903017
end of basis
end of input
*−−−
>>> IF (ITER = 1) THEN <<<
 &SCF &END
occupied
9 6 2 1
end of input
*−−−
 &RASSCF &END
inactive
9 6 0 0
ras2
0 0 3 2
nactel
6 0 0
lumorb
Thrs
1.0E−9 1.0E−6 1.0E−6
Iter
70,25
OUTORBITALS
 CANONICAL
end of input
>>> ENDIF <<<
 &COLUMBUS &END
BS_GEN
TITLE
 FURAN pi space CAS
NCPU
 4
MEMORY
 800 MB
PRINT
 1

2.8. INPUT DESCRIPTION AND EXAMPLES 39

ES_GEN
BS_MRCI
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 36
END_DRT
SSDIM
 5
NITER
 40 1
CONV
 0.001
REFSPD
 FULL
MRCISD
GENSPACE
EXLVL
 2
FROZEN
 3 2 0 0
 0 0 0 0
REFDOCC
 6 4 0 0
REFRAS
 0 0 0 0
REFCAS
 0 0 3 2
PARALLEL
ES_MRCI
BS_MCSCF
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 36 0 0
END_DRT
DOCC
 9 6 0 0
CAS
 0 0 3 2
NITER
 30 100 100
ES_MCSCF
BS_GRAD
ROOT
 1
PAR_CIGRD
ES_GRAD
end of input
 &SLAPAF &END
 ITERATIONS
 7

40 SECTION 2. THE MOLCAS-COLUMBUS LINK

 End of Input
>>> EndDo <<<

2.8. INPUT DESCRIPTION AND EXAMPLES 41

Example 5 (parallel)

*−−−
* Molecule: FURAN
* Basis: cc−pvdz
* Symmetry: C2v
* Program Flow: Seward−Scf−Rasscf−columbus(sa−mcscf−mrci−cigrd−alaska)−slapaf
* state−averaged MCSCF (1 1̂A1 + 1 3̂B1)
* excited state structure optimization for 1 3̂B1
*−−−
>>> Do while <<<<
 &SEWARD &END
symmetry
x y
basis set
C.cc−pVDZ.Dunning.9s4p1d.3s2p1d.
C1 2.07569713438866 0.00000000000000 −1.09096195658541
C2 1.36025367031838 0.00000000000000 1.40829741933368
end of basis
basis set
O.cc−pVDZ.Dunning.9s4p1d.3s2p1d.
O1 0.00000000000000 0.00000000000000 −2.62222340632217
end of basis
basis set
H.cc−pVDZ.Dunning.4s1p.2s1p.
H1 2.61859940891225 0.00000000000000 3.05678038225054
H2 3.90513434048509 0.00000000000000 −2.06300002903017
end of basis
end of input
*−−−
 &SCF &END
occupied
9 6 2 1
end of input
*−−−
 &RASSCF &END
inactive
9 6 0 0
ras2
0 0 3 2
nactel
6 0 0
lumorb
Thrs
1.0E−9 1.0E−6 1.0E−6
Iter
70,25
OUTORBITALS
 CANONICAL
end of input
 &COLUMBUS &END
BS_GEN
TITLE
 FURAN pi space CAS, optimize 3B1
NCPU
 4
MEMORY
 1000 MB
PRINT
 1
ES_GEN

42 SECTION 2. THE MOLCAS-COLUMBUS LINK

BS_MRCI
DRT
SPIN
 3
SYMM
 2
NROOT
 1
ELECTRONS
 36
END_DRT
SSDIM
 5
NITER
 40 1
CONV
 0.001
REFSPD
 FULL
MRCISD
GENSPACE
EXLVL
 2
FROZEN
 3 2 0 0
 0 0 0 0
REFDOCC
 6 4 0 0
REFRAS
 0 0 0 0
REFCAS
 0 0 3 2
PARALLEL
ES_MRCI
BS_MCSCF
TITLE
 SA−MCSCF 1A1+3B1
DRT
SPIN
 1
SYMM
 1
NROOT
 1
ELECTRONS
 36 0 0
END_DRT
DRT
SPIN
 3
SYMM
 2
NROOT
 1
ELECTRONS
 36 0 0
END_DRT
DOCC
 9 6 0 0
CAS
 0 0 3 2
NITER

2.8. INPUT DESCRIPTION AND EXAMPLES 43

 30 100 100
ES_MCSCF
BS_GRAD
ROOT
 1
ES_GRAD
end of input
 &SLAPAF &END
 ITERATIONS
 7
 End of Input
>>> EndDo <<<

44 SECTION 2. THE MOLCAS-COLUMBUS LINK

Section 3

Installation Guide

45

46 SECTION 3. INSTALLATION GUIDE

Part IV

Installation Guide

47

3.1. OVERVIEW 49

3.1 Overview

COLUMBUS and MOLCAS cooperate by exchanging well-defined, transferable quantities, specifically AO integrals, AO
density matrices and MO coefficients in the native MOLCAS format by using library functions from the MOLCAS

library. Additionally, the RunFile is processed, which is used by MOLCAS to store additional information often
required to be passed in between different MOLCAS modules. MOLCAS provides some mechanism to incorporate
external programs and making them accessible through the standard MOLCAS input file.

Since it is necessary to link a portion of the MOLCAS library, both COLUMBUS and MOLCAS must be compiled and
linked in a compatible way, that is to say (i) the same compilers and (ii) compatible compiler options. Hence,
both codes cooperate on a binary level and do not rely on some file conversion utilities.

Please note, that the MOLCAS library is frequently restructured, so that files produced with a previous version may
or may not be compatible with the previous version of MOLCAS (cf. page 52).

3.2 Binary Distributions

Starting from version 7.1 COLUMBUS can be obtained in the form of a special binary distribution suitable for opera-
tion in combination with MOLCAS. This contains only a subset of the COLUMBUS binaries along with columbus.exe,
a wrapper program that is accessed by the MOLCAS driver molcas.exe.

The installation procedure is as follows:

1. download the tar ball with the binaries for COLUMBUS 7.1 (colmoldistribution <DATE>.tgz)

2. unpack the tar ball on the target system
(tar -xzvf colmoldistribution <DATE>.tgz);

3. change to the directory colmoldistrib, copy your MOLCAS license file into this directory and execute
./usersetup.sh; this script adjusts some settings depending on your target system architecture. The
license file is necessary, because the MOLCAS driver program MOLCAS/molcas.exe runs license checks.

4. execute some test and verification programs
./runtests.sh -mpitest.x

ensures that the mpi version included in the distribution operates properly on your system
./runtests.sh -seriel

runs a few test cases with the included COLUMBUS and MOLCAS binaries including various single-point calcu-
lations and structure optimizations
./runtests.sh -parallel

runs a few test cases with the included (seriel) MOLCAS and parallel COLUMBUS version
Executing ./runtests.sh without option runs all three groups of test cases automatically.

5. To this end COLUMBUS and MOLCAS binaries are operational on the target system; however, you may want
to use your own complete and possibly parallel or free version of MOLCAS instead of the stripped subset
functionality included in the tar-ball.
To do so run
./usersetup.sh --local-molcas-version=<absolute path to MOLCAS installation>
Subsequently rerun the test and verifaction programs (cf. step (4))

Technical Details

For the execution with the precompiled MOLCAS binaries it is necessary to have molcas.rte to contain the following lines -
as produced automatically by usersetup.sh

RUNBINARY= LD LIBRARY PATH=/bigscratch/colmoldistrib/syslibs ’$program’

RUNBINARYSER= LD LIBRARY PATH=/bigscratch/colmoldistrib/syslibs ’$program’

RUNSCRIPT=’$program $input’

50

In addition usersetup.sh copies syslibs/ld-linux-x86-64.so. to /tmp/ld-linux-x86-64.so.2. This ensures, that libc
and the dynamic loader are consistent with older Linux distributions. Otherwise, you would typically see a segmentation
violation or a relocation error during execution of the MOLCAS binaries:

relocation error: ... libc.so.6: symbol dl find dso for object, version GLIBC PRIVATE not defined in file

ld-linux-x86-64.so.2 with link time reference

Corresponding settings for the COLUMBUS binaries are automatically taken care for by columbus.exe - a statically linked

binary.

3.3 Execution

Make sure, that both the startup script for molcas (molcas) as well as the COLUMBUS subdirectory of the colmold-
istribution are added to your $PATH environment variable.

Prepare some input file (cf. the TESTS subdirectory for examples) with the naming convention <project name>.input

runcolmol <project name>

runcolmol is a small shell script that may be adjusted to suit your particular needs which calls the MOLCAS driver.

3.4 Compatibility with COLUMBUS 7.0

It is necessary to set the environment variable COLUMBUS VERSION=FORCE 7.0 in order to notify columbus.exe to
assume 7.0 binaries since 7.1 operates in a slightly different manner.

There is a set of 7.0 binaries in the COLUMBUS.7.0 subdirectory, however the link COLUMBUS per default points to the
COLUMBUS.7.1 subdirectory. Reset the link to the 7.0 binaries (rm COLUMBUS; ln -s COLUMBUS.7.0 COLUMBUS).
At the time of writing the verification procedure may incorrectly detect failure.

Using self-compiled versions of 7.0 is equally possible by copying the respective binaries to the COLUMBUS.7.0

subdirectory. For the parallel version, modify the MPI variable settings in COLUMBUS.7.0/runcolmol to reflect the
path to the MPI installation. Using your own version also set the environment variable COLUMBUS RELOCAL=NONE.

3.5 Requirements/Incompatabilities

Operational combinations of hardware/software stack for a given tar-ball. Asterix marks the combination used
for creation. MOLCAS and COLUMBUS executables compiled with the same compiler (ifort/icc) version.

OS kernel glibc perl bash arch Columbus Molcas status
SUSE 13.1 3.11.6-4 2.18 5.18.1 4.2 x86 64 7.1.r1.0.0∗ 8.1.14-06-26 ok
SUSE 13.2 3.16.6 2.19 5.20.1 4.2 x86 64 7.1.r1.0.0 8.1.14-06-26 ok

CentOS 5.11 2.6.18 2.5 5.8.8 4.1.2 x86 64 7.1.r1.0.0 8.1.14-06-26 1)
CentOS 6.7 2.6.32 2.12 5.10.1 4.1.2 x86 64 7.1.r1.0.0 8.1.14-06-26 ok
CentOS 7.0 3.10.0 2.17 5.16.3 4.2.46 x86 64 7.1.r1.0.0 8.0.15-11-11 ok
SUSE 13.1 3.11.6-4 2.18 5.18.1 4.2 x86 64 7.1.r1.0.0∗ 8.0.15-11-11 ok
SUSE 13.1 3.11.6-4 2.18 5.18.1 4.2 x86 64 7.1.r1.0.1∗ 8.0.15-11-11 ok

1 kernel too old.

Compatibility of pre-compiled Columbus binaries with a particular Molcas version while using a different Molcas
version at run time.

(in Col) Molcas binaries
7.9 111 8.0.15-11-01 8.1.14-06-26 8.1.15-11-30

7.9 111 ok
8.0.15-11-01 partial1 ok ok partial1

8.1.14-06-26 partial1 ok ok partial1

1 alaska fails to read the effective density and fock matrices since binary format has changed.

3.6. VERIFICATION PROCEDURE 51

3.6 Verification procedure

The TESTS subdirectory contains for each test case the input file (*.input), a reference output file (*.output) , an
input file for the verification script (*.config) which contains the pair of file names to be tested for consistency
along with a variety of tests in terms of a regex expressions. The output of each verification run can be found in
*.verifyls.

3.6.1 Semantics of the configuration file

The configuration file is parsed line by line. Comment lines start with #, lines specifying the pair of files to be
compared start by % and the pair of files including relative or absolute paths are separated by :. The following lines
are considered as one test specification per line refering to the last specified pair of files. Hence, tests following
another specification line for the pair of files refer to the latter.

Each test specification consists of 3 or 5 columns separated by !.

The first column specifies the regex pattern of the line(s) to be compared.

The second column specifies the column of the data in these lines to be tested (assuming separation of columns
by white space).

The third column indicates the comparison threshold.

The pattern of the fourth and fifth column constrain the search for the pattern of column 1 to a range of lines
starting with the first appearance of the pattern in column four and ending with the first subsequent appearance
of the pattern in column five.

3.7 Trouble Shooting

COLUMBUS 7.1 differs considerable from its predecessor both in terms of technical implementation as well as in
terms of algorithmical details. Hence, although all test cases pass the test criteria, only a subset of the possible
usage combinations are covered.

There are two types of technical failures:

1. operatings system specific issues
Both COLUMBUS and MOLCAS binaries are not fully statically linked but still require the glibc libraries
(the basic system libraries of a Linux system). The syslibs subdirectory contains the proper versions
of all necessary shared libraries and the default setup is to use these shared libraries whenever a
COLUMBUS or MOLCAS binary is executed.
Note, that a few years ago, there was a major change in the linux kernel moving from version 2.6
to version 3.x. Current Linux distributions such as SUSE.13.x and CentOS 7.x are based on the 3.x
kernel, while older releases are based on 2.6 kernel. Running binaries compiled under the 3.x kernel
may or may not run on 2.6 kernel based systems.
With exception of molcas.exe, which is supplied solely as a binary by the MOLCAS developers, all other
binaries can be provided as fully statically linked binaries (at the expense of increased size).
Parallel COLUMBUS codes are linked statically to avoid additional dependencies on the MPI runtime
scripts. However, even so, a consistent libc version of gethostbyname must exist on the target system.

2. interoperability issues
They may arise if the COLUMBUS version is combined with your own MOLCAS version. Incompatibility
arises here from (i) different (incompatible) file structure of your own MOLCAS version typically giving
rise to message complaining about non-existing or unreadable files or (ii) possible inconsistencies when
mixing binaries produced by different compilers.

52

3.8 Revision Log

r1.0.0 initial version open for testing

r1.0.1 – corrected -mpitest.x option

– corrected call of parallel Columbus codes in columbus.exe

– added support to read LUMORB format 2.0

r1.0.2 – added support for changes in the initialization of integral routines for 8.1 newer than March 2015

– added support for generalized slapaf bookkeeping handling single state optimizations; corresponding
minimalistic changes to 8.1 sources commited on 15/12/08.

– depending on the molcas version string the codes switches between the usage of tran.x and tran.x 81.

r1.0.4 – Several bugfixes and optimizations in the Columbus part.

– Switched from mpich1.2.7 to mpich2-1.4.1.
Note, that mpich1.2.7 is script based while mpich2-1.4.1 is partially based on binaries loading shared
libraries. This might produce failures with older operating system distributions.

– The fix from feb 9,2016 prevents a failure due to the incorporated BLAS libraries
on a system with avx2 registers and has missing links added to the mpich2/bin subdirectory.

r1.0.5 – Several bugfixes and optimizations in the Columbus part, especially fixing the daio: maxrec exceeded,
due to an incorrect file size estimate (thanks to N. Bogdanov, to point out the problem and provision
of a test case).

– This version changes for some additional files to compression, thereby reducing the disk and memory
space requirements. Per default the parallel CI code keeps everything in memory while the seriel CI
code uses disk space, instead. Although, it is not yet moved in to the interface, there is the possibility
to drastically reduce the memory consumption for the subspace vectors forcing them to disk (ciudgin:
fileloc=1,0,0 to be added manually, currently) - for the parallel code, consider using a SSD then.
Vice versa, the seriel code can be forced to run fully in memory (ciudgin: fileloc=1,1,1 to be added
manually).

– Early termination of the CI code due to incorrect evaluation of integral distribution size fixed.

r1.1.0 Major changes in the low-level operation in order to facilitate multi- and many-core operation:

– Global Array Toolkit completely replaced by a small library directly utilizing shared memory func-
tionality

– global shared counter replaced by a faster scheme based on semaphores which does not suffer from
saturation effects

– new integral storage format for more efficient storage of integrals, densities and ci vectors reducing
disk usage for extended systems by up to 90%

– new parallelization strategy that largely decouples load balancing from the associated communication
volume leading to a reduction of the network load by more than one order of magnitude

Thomas Müller January 5, 2017

Jülich Supercomputing Centre
Institute of Advanced Simulation
Forschungszentrum Jülich
D-52425 Jülich.

Part V

Advanced Examples and Annexes

53

3.9. INTRODUCTION TO DRTS IN COLUMBUS 55

3.9 Introduction to DRTs in Columbus

add non-relativistic DRT add SO-DRT, even and odd electron case

56

Bibliography

[1] B. O. Roos. The complete active space scf method in a fock-matrix-based super-ci formulation. Int. J. Quant.
Chem., S14:175, 1980.

[2] H. Lischka, R. Shepard, R. M. Pitzer, I. Shavitt, M. Dallos, T. Müller, P. G. Szalay, M. Seth, G. S. Kedziora,
S. Yabushita, and Z. Zhang. Phys. Chem. Chem. Phys., 3:664, 2001.

[3] R. J. Gdanitz and R. Ahlrichs. The averaged coupled-pair functional (acpf): a size-extensive modification of
mr ci(sd). Chem. Phys. Letters, 143:413, 1988.

[4] P. G. Szalay and R. J. Bartlett. Chem. Phys. Letters, 214:481, 1993.

[5] P. G. Szalay. In R. J. Bartlett, editor, Modern Ideas in Coupled Cluster Methods. World Scientific, Singapore,
1997.

[6] B. O. Roos. A new method for large-scale CI calculations. Chem. Phys. Letters, 15:153, 1972.

[7] I. Shavitt. Int. J. Quantum Chem., S11:131, 1977.

[8] R. Shepard, G. S. Kedziora, H. Lischka, I. Shavitt, Th. Müller, P. G. Szalay, M. Kallay, and M. Seth. The
accuracy of molecular bond lengths computed by multireference electronic structure methods. Chem. Phys.,
349:37, 2008.

[9] Th. Müller, M. Dallos, H. Lischka, Z. Dubrovay, and P. G. Szalay. Theor. Chem. Acc., 105:227, 2001.

[10] P. G. Szalay, Th. Müller, and H. Lischka. Excitation energies and transition moments by the multireference
averaged quadratic coupled cluster (mr-aqcc) method. Phys. Chem. Chem. Phys., 2:2067, 2000.

57

